Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug
In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of th...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2020-01, Vol.12 (4), p.2793-2809 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2809 |
---|---|
container_issue | 4 |
container_start_page | 2793 |
container_title | Nanoscale |
container_volume | 12 |
creator | Gobeaux, Frédéric Bizeau, Joëlle Samson, Firmin Marichal, Laurent Grillo, Isabelle Wien, Frank Yesylevsky, Semen O Ramseyer, Christophe Rouquette, Marie Lepêtre-Mouelhi, Sinda Desmaële, Didier Couvreur, Patrick Guenoun, Patrick Renault, Jean-Philippe Testard, Fabienne |
description | In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol
which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles. |
doi_str_mv | 10.1039/c9nr06485k |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02434394v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348222543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3eb04dd1dee5e57db688f5001c3ecf62bab12cbb764160409eed6afbc619f9873</originalsourceid><addsrcrecordid>eNo9kdtKw0AQhhdRPFRvfAAJeKUQ3VO2We9K8YRFQfR62cNEt6abdLcp9O2Nbe3VDDPf_MzMj9A5wTcEM3lrZYhY8LL42UPHFHOcMzak-7tc8CN0ktIUYyGZYIfoiBEpCCv4MfKj2nQzH3IX_RJC5nzSKcHM1KusqbLat955mwUdmlbHhbc1pLts8Q1ZasH6qu9ZneCPXRfnna4hQK4dhCb5AOtRF7uvU3RQ6TrB2TYO0OfD_cf4KZ-8PT6PR5PcsrJY5AwM5s4RB1BAMXRGlGVVYEwsA1sJarQh1BozFJyI_j4J4ISujBVEVrIcsgG62uh-61q10c90XKlGe_U0migLWmHKGWeSL0nPXm7YNjbzDtJCTZsuhn49RRkvKaUFZz11vaFsbFKKUO1kCVZ_DqixfH1fO_DSwxdbyc7MwO3Q_5ezX_pxgfc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348222543</pqid></control><display><type>article</type><title>Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Gobeaux, Frédéric ; Bizeau, Joëlle ; Samson, Firmin ; Marichal, Laurent ; Grillo, Isabelle ; Wien, Frank ; Yesylevsky, Semen O ; Ramseyer, Christophe ; Rouquette, Marie ; Lepêtre-Mouelhi, Sinda ; Desmaële, Didier ; Couvreur, Patrick ; Guenoun, Patrick ; Renault, Jean-Philippe ; Testard, Fabienne</creator><creatorcontrib>Gobeaux, Frédéric ; Bizeau, Joëlle ; Samson, Firmin ; Marichal, Laurent ; Grillo, Isabelle ; Wien, Frank ; Yesylevsky, Semen O ; Ramseyer, Christophe ; Rouquette, Marie ; Lepêtre-Mouelhi, Sinda ; Desmaële, Didier ; Couvreur, Patrick ; Guenoun, Patrick ; Renault, Jean-Philippe ; Testard, Fabienne</creatorcontrib><description>In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol
which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr06485k</identifier><identifier>PMID: 31961354</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Adenosine ; Blood circulation ; Blood plasma ; Chemical compounds ; Chemical Sciences ; Computer simulation ; Dichroism ; Dismantling ; Docking ; Drugs ; Fluorescence ; Free energy ; Heat measurement ; Material chemistry ; Nanoparticles ; Neutron scattering ; NMR ; Nuclear magnetic resonance ; Serum albumin ; Spectroscopy ; Spectrum analysis ; Stability ; Synchrotron radiation ; Titration calorimetry</subject><ispartof>Nanoscale, 2020-01, Vol.12 (4), p.2793-2809</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3eb04dd1dee5e57db688f5001c3ecf62bab12cbb764160409eed6afbc619f9873</citedby><cites>FETCH-LOGICAL-c385t-3eb04dd1dee5e57db688f5001c3ecf62bab12cbb764160409eed6afbc619f9873</cites><orcidid>0000-0002-6748-8931 ; 0000-0001-7961-5443 ; 0000-0002-5774-6773 ; 0000-0002-8327-9523 ; 0000-0002-0676-9449 ; 0000-0003-2555-5857 ; 0000-0003-4410-2378 ; 0000-0002-5603-9516 ; 0000-0003-4013-4655 ; 0000-0002-0752-8735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31961354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-02434394$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gobeaux, Frédéric</creatorcontrib><creatorcontrib>Bizeau, Joëlle</creatorcontrib><creatorcontrib>Samson, Firmin</creatorcontrib><creatorcontrib>Marichal, Laurent</creatorcontrib><creatorcontrib>Grillo, Isabelle</creatorcontrib><creatorcontrib>Wien, Frank</creatorcontrib><creatorcontrib>Yesylevsky, Semen O</creatorcontrib><creatorcontrib>Ramseyer, Christophe</creatorcontrib><creatorcontrib>Rouquette, Marie</creatorcontrib><creatorcontrib>Lepêtre-Mouelhi, Sinda</creatorcontrib><creatorcontrib>Desmaële, Didier</creatorcontrib><creatorcontrib>Couvreur, Patrick</creatorcontrib><creatorcontrib>Guenoun, Patrick</creatorcontrib><creatorcontrib>Renault, Jean-Philippe</creatorcontrib><creatorcontrib>Testard, Fabienne</creatorcontrib><title>Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol
which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles.</description><subject>Adenosine</subject><subject>Blood circulation</subject><subject>Blood plasma</subject><subject>Chemical compounds</subject><subject>Chemical Sciences</subject><subject>Computer simulation</subject><subject>Dichroism</subject><subject>Dismantling</subject><subject>Docking</subject><subject>Drugs</subject><subject>Fluorescence</subject><subject>Free energy</subject><subject>Heat measurement</subject><subject>Material chemistry</subject><subject>Nanoparticles</subject><subject>Neutron scattering</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Serum albumin</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Synchrotron radiation</subject><subject>Titration calorimetry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kdtKw0AQhhdRPFRvfAAJeKUQ3VO2We9K8YRFQfR62cNEt6abdLcp9O2Nbe3VDDPf_MzMj9A5wTcEM3lrZYhY8LL42UPHFHOcMzak-7tc8CN0ktIUYyGZYIfoiBEpCCv4MfKj2nQzH3IX_RJC5nzSKcHM1KusqbLat955mwUdmlbHhbc1pLts8Q1ZasH6qu9ZneCPXRfnna4hQK4dhCb5AOtRF7uvU3RQ6TrB2TYO0OfD_cf4KZ-8PT6PR5PcsrJY5AwM5s4RB1BAMXRGlGVVYEwsA1sJarQh1BozFJyI_j4J4ISujBVEVrIcsgG62uh-61q10c90XKlGe_U0migLWmHKGWeSL0nPXm7YNjbzDtJCTZsuhn49RRkvKaUFZz11vaFsbFKKUO1kCVZ_DqixfH1fO_DSwxdbyc7MwO3Q_5ezX_pxgfc</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Gobeaux, Frédéric</creator><creator>Bizeau, Joëlle</creator><creator>Samson, Firmin</creator><creator>Marichal, Laurent</creator><creator>Grillo, Isabelle</creator><creator>Wien, Frank</creator><creator>Yesylevsky, Semen O</creator><creator>Ramseyer, Christophe</creator><creator>Rouquette, Marie</creator><creator>Lepêtre-Mouelhi, Sinda</creator><creator>Desmaële, Didier</creator><creator>Couvreur, Patrick</creator><creator>Guenoun, Patrick</creator><creator>Renault, Jean-Philippe</creator><creator>Testard, Fabienne</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6748-8931</orcidid><orcidid>https://orcid.org/0000-0001-7961-5443</orcidid><orcidid>https://orcid.org/0000-0002-5774-6773</orcidid><orcidid>https://orcid.org/0000-0002-8327-9523</orcidid><orcidid>https://orcid.org/0000-0002-0676-9449</orcidid><orcidid>https://orcid.org/0000-0003-2555-5857</orcidid><orcidid>https://orcid.org/0000-0003-4410-2378</orcidid><orcidid>https://orcid.org/0000-0002-5603-9516</orcidid><orcidid>https://orcid.org/0000-0003-4013-4655</orcidid><orcidid>https://orcid.org/0000-0002-0752-8735</orcidid></search><sort><creationdate>20200128</creationdate><title>Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug</title><author>Gobeaux, Frédéric ; Bizeau, Joëlle ; Samson, Firmin ; Marichal, Laurent ; Grillo, Isabelle ; Wien, Frank ; Yesylevsky, Semen O ; Ramseyer, Christophe ; Rouquette, Marie ; Lepêtre-Mouelhi, Sinda ; Desmaële, Didier ; Couvreur, Patrick ; Guenoun, Patrick ; Renault, Jean-Philippe ; Testard, Fabienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3eb04dd1dee5e57db688f5001c3ecf62bab12cbb764160409eed6afbc619f9873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine</topic><topic>Blood circulation</topic><topic>Blood plasma</topic><topic>Chemical compounds</topic><topic>Chemical Sciences</topic><topic>Computer simulation</topic><topic>Dichroism</topic><topic>Dismantling</topic><topic>Docking</topic><topic>Drugs</topic><topic>Fluorescence</topic><topic>Free energy</topic><topic>Heat measurement</topic><topic>Material chemistry</topic><topic>Nanoparticles</topic><topic>Neutron scattering</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Serum albumin</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Synchrotron radiation</topic><topic>Titration calorimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gobeaux, Frédéric</creatorcontrib><creatorcontrib>Bizeau, Joëlle</creatorcontrib><creatorcontrib>Samson, Firmin</creatorcontrib><creatorcontrib>Marichal, Laurent</creatorcontrib><creatorcontrib>Grillo, Isabelle</creatorcontrib><creatorcontrib>Wien, Frank</creatorcontrib><creatorcontrib>Yesylevsky, Semen O</creatorcontrib><creatorcontrib>Ramseyer, Christophe</creatorcontrib><creatorcontrib>Rouquette, Marie</creatorcontrib><creatorcontrib>Lepêtre-Mouelhi, Sinda</creatorcontrib><creatorcontrib>Desmaële, Didier</creatorcontrib><creatorcontrib>Couvreur, Patrick</creatorcontrib><creatorcontrib>Guenoun, Patrick</creatorcontrib><creatorcontrib>Renault, Jean-Philippe</creatorcontrib><creatorcontrib>Testard, Fabienne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gobeaux, Frédéric</au><au>Bizeau, Joëlle</au><au>Samson, Firmin</au><au>Marichal, Laurent</au><au>Grillo, Isabelle</au><au>Wien, Frank</au><au>Yesylevsky, Semen O</au><au>Ramseyer, Christophe</au><au>Rouquette, Marie</au><au>Lepêtre-Mouelhi, Sinda</au><au>Desmaële, Didier</au><au>Couvreur, Patrick</au><au>Guenoun, Patrick</au><au>Renault, Jean-Philippe</au><au>Testard, Fabienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>2793</spage><epage>2809</epage><pages>2793-2809</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol
which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31961354</pmid><doi>10.1039/c9nr06485k</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6748-8931</orcidid><orcidid>https://orcid.org/0000-0001-7961-5443</orcidid><orcidid>https://orcid.org/0000-0002-5774-6773</orcidid><orcidid>https://orcid.org/0000-0002-8327-9523</orcidid><orcidid>https://orcid.org/0000-0002-0676-9449</orcidid><orcidid>https://orcid.org/0000-0003-2555-5857</orcidid><orcidid>https://orcid.org/0000-0003-4410-2378</orcidid><orcidid>https://orcid.org/0000-0002-5603-9516</orcidid><orcidid>https://orcid.org/0000-0003-4013-4655</orcidid><orcidid>https://orcid.org/0000-0002-0752-8735</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2020-01, Vol.12 (4), p.2793-2809 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_02434394v1 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Adenosine Blood circulation Blood plasma Chemical compounds Chemical Sciences Computer simulation Dichroism Dismantling Docking Drugs Fluorescence Free energy Heat measurement Material chemistry Nanoparticles Neutron scattering NMR Nuclear magnetic resonance Serum albumin Spectroscopy Spectrum analysis Stability Synchrotron radiation Titration calorimetry |
title | Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Albumin-driven%20disassembly%20of%20lipidic%20nanoparticles:%20the%20specific%20case%20of%20the%20squalene-adenosine%20nanodrug&rft.jtitle=Nanoscale&rft.au=Gobeaux,%20Fr%C3%A9d%C3%A9ric&rft.date=2020-01-28&rft.volume=12&rft.issue=4&rft.spage=2793&rft.epage=2809&rft.pages=2793-2809&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr06485k&rft_dat=%3Cproquest_hal_p%3E2348222543%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348222543&rft_id=info:pmid/31961354&rfr_iscdi=true |