Plant hosts control microbial denitrification activity

In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2019-03, Vol.95 (3)
Hauptverfasser: Achouak, Wafa, Abrouk, Danis, Guyonnet, Julien, Barakat, Mohamed, Ortet, Philippe, Simon, Laurent, Lerondelle, Catherine, Heulin, Thierry, Haichar, Feth El Zahar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title FEMS microbiology ecology
container_volume 95
creator Achouak, Wafa
Abrouk, Danis
Guyonnet, Julien
Barakat, Mohamed
Ortet, Philippe
Simon, Laurent
Lerondelle, Catherine
Heulin, Thierry
Haichar, Feth El Zahar
description In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.
doi_str_mv 10.1093/femsec/fiz021
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02096084v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400609245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk6PXqXgRQ91Lz-6Jscx1AkDPeg5pGnKMtpmNulg_vVGOod4eo_H5z3e94PQNYYHDIJOK9N4o6eV_QKCT9AYZzlLZ4Lh0z_9CF14vwHAGWVwjkYUchLnfIxmb7VqQ7J2PvhEuzZ0rk4aqztXWFUnpWlt6GxltQrWtYnSwe5s2F-is0rV3lwd6gR9PD2-L5bp6vX5ZTFfpZpRHlJBoFCMY4ZzxjQFgJxXOS4KopUQeVZhXipGy5KqTAMROv5agSqyHMctUHSC7oe7a1XLbWcb1e2lU1Yu5yupjZJAQMyAsx2O7N3Abjv32RsfZGO9NnUMaFzvJcGcC06AQ0Rv_6Eb13dtTCIJA5iBICyLVDpQ0Yb3namOH2CQP_LlIF8O8iN_c7jaF40pj_SvbfoNA0l_JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400609245</pqid></control><display><type>article</type><title>Plant hosts control microbial denitrification activity</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Achouak, Wafa ; Abrouk, Danis ; Guyonnet, Julien ; Barakat, Mohamed ; Ortet, Philippe ; Simon, Laurent ; Lerondelle, Catherine ; Heulin, Thierry ; Haichar, Feth El Zahar</creator><creatorcontrib>Achouak, Wafa ; Abrouk, Danis ; Guyonnet, Julien ; Barakat, Mohamed ; Ortet, Philippe ; Simon, Laurent ; Lerondelle, Catherine ; Heulin, Thierry ; Haichar, Feth El Zahar</creatorcontrib><description>In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiz021</identifier><identifier>PMID: 30726948</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alfalfa ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Brassica ; Denitrification ; Denitrification - genetics ; Ecology ; Environmental Sciences ; Exudates ; Exudation ; Flowers &amp; plants ; Gas chromatography ; Gene expression ; Host Microbial Interactions ; Host plants ; Life Sciences ; Metabolites ; Microbiology ; Microbiota ; Microbiota - genetics ; Microbiota - physiology ; Microorganisms ; NirK protein ; Plant Exudates ; Plant Roots - chemistry ; Plant Roots - classification ; Plant Roots - microbiology ; Plant species ; Plant tissues ; Plants - chemistry ; Plants - classification ; Plants - microbiology ; Power plants ; Rhizosphere ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Soil - chemistry ; Soil Microbiology ; Soils ; Wheat</subject><ispartof>FEMS microbiology ecology, 2019-03, Vol.95 (3)</ispartof><rights>FEMS 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</citedby><cites>FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</cites><orcidid>0000-0003-3687-0529 ; 0000-0002-7162-5388 ; 0000-0002-2648-8978 ; 0000-0002-9286-0061 ; 0000-0003-4297-6661 ; 0000-0003-1389-9871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30726948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-02096084$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Achouak, Wafa</creatorcontrib><creatorcontrib>Abrouk, Danis</creatorcontrib><creatorcontrib>Guyonnet, Julien</creatorcontrib><creatorcontrib>Barakat, Mohamed</creatorcontrib><creatorcontrib>Ortet, Philippe</creatorcontrib><creatorcontrib>Simon, Laurent</creatorcontrib><creatorcontrib>Lerondelle, Catherine</creatorcontrib><creatorcontrib>Heulin, Thierry</creatorcontrib><creatorcontrib>Haichar, Feth El Zahar</creatorcontrib><title>Plant hosts control microbial denitrification activity</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.</description><subject>Alfalfa</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Brassica</subject><subject>Denitrification</subject><subject>Denitrification - genetics</subject><subject>Ecology</subject><subject>Environmental Sciences</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Flowers &amp; plants</subject><subject>Gas chromatography</subject><subject>Gene expression</subject><subject>Host Microbial Interactions</subject><subject>Host plants</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Microbiota - genetics</subject><subject>Microbiota - physiology</subject><subject>Microorganisms</subject><subject>NirK protein</subject><subject>Plant Exudates</subject><subject>Plant Roots - chemistry</subject><subject>Plant Roots - classification</subject><subject>Plant Roots - microbiology</subject><subject>Plant species</subject><subject>Plant tissues</subject><subject>Plants - chemistry</subject><subject>Plants - classification</subject><subject>Plants - microbiology</subject><subject>Power plants</subject><subject>Rhizosphere</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Soils</subject><subject>Wheat</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkM9LwzAUx4Mobk6PXqXgRQ91Lz-6Jscx1AkDPeg5pGnKMtpmNulg_vVGOod4eo_H5z3e94PQNYYHDIJOK9N4o6eV_QKCT9AYZzlLZ4Lh0z_9CF14vwHAGWVwjkYUchLnfIxmb7VqQ7J2PvhEuzZ0rk4aqztXWFUnpWlt6GxltQrWtYnSwe5s2F-is0rV3lwd6gR9PD2-L5bp6vX5ZTFfpZpRHlJBoFCMY4ZzxjQFgJxXOS4KopUQeVZhXipGy5KqTAMROv5agSqyHMctUHSC7oe7a1XLbWcb1e2lU1Yu5yupjZJAQMyAsx2O7N3Abjv32RsfZGO9NnUMaFzvJcGcC06AQ0Rv_6Eb13dtTCIJA5iBICyLVDpQ0Yb3namOH2CQP_LlIF8O8iN_c7jaF40pj_SvbfoNA0l_JA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Achouak, Wafa</creator><creator>Abrouk, Danis</creator><creator>Guyonnet, Julien</creator><creator>Barakat, Mohamed</creator><creator>Ortet, Philippe</creator><creator>Simon, Laurent</creator><creator>Lerondelle, Catherine</creator><creator>Heulin, Thierry</creator><creator>Haichar, Feth El Zahar</creator><general>Oxford University Press</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3687-0529</orcidid><orcidid>https://orcid.org/0000-0002-7162-5388</orcidid><orcidid>https://orcid.org/0000-0002-2648-8978</orcidid><orcidid>https://orcid.org/0000-0002-9286-0061</orcidid><orcidid>https://orcid.org/0000-0003-4297-6661</orcidid><orcidid>https://orcid.org/0000-0003-1389-9871</orcidid></search><sort><creationdate>20190301</creationdate><title>Plant hosts control microbial denitrification activity</title><author>Achouak, Wafa ; Abrouk, Danis ; Guyonnet, Julien ; Barakat, Mohamed ; Ortet, Philippe ; Simon, Laurent ; Lerondelle, Catherine ; Heulin, Thierry ; Haichar, Feth El Zahar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alfalfa</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Brassica</topic><topic>Denitrification</topic><topic>Denitrification - genetics</topic><topic>Ecology</topic><topic>Environmental Sciences</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Flowers &amp; plants</topic><topic>Gas chromatography</topic><topic>Gene expression</topic><topic>Host Microbial Interactions</topic><topic>Host plants</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Microbiota - genetics</topic><topic>Microbiota - physiology</topic><topic>Microorganisms</topic><topic>NirK protein</topic><topic>Plant Exudates</topic><topic>Plant Roots - chemistry</topic><topic>Plant Roots - classification</topic><topic>Plant Roots - microbiology</topic><topic>Plant species</topic><topic>Plant tissues</topic><topic>Plants - chemistry</topic><topic>Plants - classification</topic><topic>Plants - microbiology</topic><topic>Power plants</topic><topic>Rhizosphere</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Soils</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achouak, Wafa</creatorcontrib><creatorcontrib>Abrouk, Danis</creatorcontrib><creatorcontrib>Guyonnet, Julien</creatorcontrib><creatorcontrib>Barakat, Mohamed</creatorcontrib><creatorcontrib>Ortet, Philippe</creatorcontrib><creatorcontrib>Simon, Laurent</creatorcontrib><creatorcontrib>Lerondelle, Catherine</creatorcontrib><creatorcontrib>Heulin, Thierry</creatorcontrib><creatorcontrib>Haichar, Feth El Zahar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achouak, Wafa</au><au>Abrouk, Danis</au><au>Guyonnet, Julien</au><au>Barakat, Mohamed</au><au>Ortet, Philippe</au><au>Simon, Laurent</au><au>Lerondelle, Catherine</au><au>Heulin, Thierry</au><au>Haichar, Feth El Zahar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant hosts control microbial denitrification activity</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>95</volume><issue>3</issue><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30726948</pmid><doi>10.1093/femsec/fiz021</doi><orcidid>https://orcid.org/0000-0003-3687-0529</orcidid><orcidid>https://orcid.org/0000-0002-7162-5388</orcidid><orcidid>https://orcid.org/0000-0002-2648-8978</orcidid><orcidid>https://orcid.org/0000-0002-9286-0061</orcidid><orcidid>https://orcid.org/0000-0003-4297-6661</orcidid><orcidid>https://orcid.org/0000-0003-1389-9871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-6941
ispartof FEMS microbiology ecology, 2019-03, Vol.95 (3)
issn 1574-6941
0168-6496
1574-6941
language eng
recordid cdi_hal_primary_oai_HAL_cea_02096084v1
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alfalfa
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Brassica
Denitrification
Denitrification - genetics
Ecology
Environmental Sciences
Exudates
Exudation
Flowers & plants
Gas chromatography
Gene expression
Host Microbial Interactions
Host plants
Life Sciences
Metabolites
Microbiology
Microbiota
Microbiota - genetics
Microbiota - physiology
Microorganisms
NirK protein
Plant Exudates
Plant Roots - chemistry
Plant Roots - classification
Plant Roots - microbiology
Plant species
Plant tissues
Plants - chemistry
Plants - classification
Plants - microbiology
Power plants
Rhizosphere
RNA, Ribosomal, 16S - genetics
rRNA 16S
Soil - chemistry
Soil Microbiology
Soils
Wheat
title Plant hosts control microbial denitrification activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20hosts%20control%20microbial%20denitrification%20activity&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Achouak,%20Wafa&rft.date=2019-03-01&rft.volume=95&rft.issue=3&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiz021&rft_dat=%3Cproquest_hal_p%3E2400609245%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400609245&rft_id=info:pmid/30726948&rfr_iscdi=true