Plant hosts control microbial denitrification activity
In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2019-03, Vol.95 (3) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | FEMS microbiology ecology |
container_volume | 95 |
creator | Achouak, Wafa Abrouk, Danis Guyonnet, Julien Barakat, Mohamed Ortet, Philippe Simon, Laurent Lerondelle, Catherine Heulin, Thierry Haichar, Feth El Zahar |
description | In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities. |
doi_str_mv | 10.1093/femsec/fiz021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02096084v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400609245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUx4Mobk6PXqXgRQ91Lz-6Jscx1AkDPeg5pGnKMtpmNulg_vVGOod4eo_H5z3e94PQNYYHDIJOK9N4o6eV_QKCT9AYZzlLZ4Lh0z_9CF14vwHAGWVwjkYUchLnfIxmb7VqQ7J2PvhEuzZ0rk4aqztXWFUnpWlt6GxltQrWtYnSwe5s2F-is0rV3lwd6gR9PD2-L5bp6vX5ZTFfpZpRHlJBoFCMY4ZzxjQFgJxXOS4KopUQeVZhXipGy5KqTAMROv5agSqyHMctUHSC7oe7a1XLbWcb1e2lU1Yu5yupjZJAQMyAsx2O7N3Abjv32RsfZGO9NnUMaFzvJcGcC06AQ0Rv_6Eb13dtTCIJA5iBICyLVDpQ0Yb3namOH2CQP_LlIF8O8iN_c7jaF40pj_SvbfoNA0l_JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400609245</pqid></control><display><type>article</type><title>Plant hosts control microbial denitrification activity</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Achouak, Wafa ; Abrouk, Danis ; Guyonnet, Julien ; Barakat, Mohamed ; Ortet, Philippe ; Simon, Laurent ; Lerondelle, Catherine ; Heulin, Thierry ; Haichar, Feth El Zahar</creator><creatorcontrib>Achouak, Wafa ; Abrouk, Danis ; Guyonnet, Julien ; Barakat, Mohamed ; Ortet, Philippe ; Simon, Laurent ; Lerondelle, Catherine ; Heulin, Thierry ; Haichar, Feth El Zahar</creatorcontrib><description>In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiz021</identifier><identifier>PMID: 30726948</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alfalfa ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Brassica ; Denitrification ; Denitrification - genetics ; Ecology ; Environmental Sciences ; Exudates ; Exudation ; Flowers & plants ; Gas chromatography ; Gene expression ; Host Microbial Interactions ; Host plants ; Life Sciences ; Metabolites ; Microbiology ; Microbiota ; Microbiota - genetics ; Microbiota - physiology ; Microorganisms ; NirK protein ; Plant Exudates ; Plant Roots - chemistry ; Plant Roots - classification ; Plant Roots - microbiology ; Plant species ; Plant tissues ; Plants - chemistry ; Plants - classification ; Plants - microbiology ; Power plants ; Rhizosphere ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Soil - chemistry ; Soil Microbiology ; Soils ; Wheat</subject><ispartof>FEMS microbiology ecology, 2019-03, Vol.95 (3)</ispartof><rights>FEMS 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</citedby><cites>FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</cites><orcidid>0000-0003-3687-0529 ; 0000-0002-7162-5388 ; 0000-0002-2648-8978 ; 0000-0002-9286-0061 ; 0000-0003-4297-6661 ; 0000-0003-1389-9871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30726948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-02096084$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Achouak, Wafa</creatorcontrib><creatorcontrib>Abrouk, Danis</creatorcontrib><creatorcontrib>Guyonnet, Julien</creatorcontrib><creatorcontrib>Barakat, Mohamed</creatorcontrib><creatorcontrib>Ortet, Philippe</creatorcontrib><creatorcontrib>Simon, Laurent</creatorcontrib><creatorcontrib>Lerondelle, Catherine</creatorcontrib><creatorcontrib>Heulin, Thierry</creatorcontrib><creatorcontrib>Haichar, Feth El Zahar</creatorcontrib><title>Plant hosts control microbial denitrification activity</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.</description><subject>Alfalfa</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Brassica</subject><subject>Denitrification</subject><subject>Denitrification - genetics</subject><subject>Ecology</subject><subject>Environmental Sciences</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Flowers & plants</subject><subject>Gas chromatography</subject><subject>Gene expression</subject><subject>Host Microbial Interactions</subject><subject>Host plants</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Microbiota - genetics</subject><subject>Microbiota - physiology</subject><subject>Microorganisms</subject><subject>NirK protein</subject><subject>Plant Exudates</subject><subject>Plant Roots - chemistry</subject><subject>Plant Roots - classification</subject><subject>Plant Roots - microbiology</subject><subject>Plant species</subject><subject>Plant tissues</subject><subject>Plants - chemistry</subject><subject>Plants - classification</subject><subject>Plants - microbiology</subject><subject>Power plants</subject><subject>Rhizosphere</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Soils</subject><subject>Wheat</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkM9LwzAUx4Mobk6PXqXgRQ91Lz-6Jscx1AkDPeg5pGnKMtpmNulg_vVGOod4eo_H5z3e94PQNYYHDIJOK9N4o6eV_QKCT9AYZzlLZ4Lh0z_9CF14vwHAGWVwjkYUchLnfIxmb7VqQ7J2PvhEuzZ0rk4aqztXWFUnpWlt6GxltQrWtYnSwe5s2F-is0rV3lwd6gR9PD2-L5bp6vX5ZTFfpZpRHlJBoFCMY4ZzxjQFgJxXOS4KopUQeVZhXipGy5KqTAMROv5agSqyHMctUHSC7oe7a1XLbWcb1e2lU1Yu5yupjZJAQMyAsx2O7N3Abjv32RsfZGO9NnUMaFzvJcGcC06AQ0Rv_6Eb13dtTCIJA5iBICyLVDpQ0Yb3namOH2CQP_LlIF8O8iN_c7jaF40pj_SvbfoNA0l_JA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Achouak, Wafa</creator><creator>Abrouk, Danis</creator><creator>Guyonnet, Julien</creator><creator>Barakat, Mohamed</creator><creator>Ortet, Philippe</creator><creator>Simon, Laurent</creator><creator>Lerondelle, Catherine</creator><creator>Heulin, Thierry</creator><creator>Haichar, Feth El Zahar</creator><general>Oxford University Press</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3687-0529</orcidid><orcidid>https://orcid.org/0000-0002-7162-5388</orcidid><orcidid>https://orcid.org/0000-0002-2648-8978</orcidid><orcidid>https://orcid.org/0000-0002-9286-0061</orcidid><orcidid>https://orcid.org/0000-0003-4297-6661</orcidid><orcidid>https://orcid.org/0000-0003-1389-9871</orcidid></search><sort><creationdate>20190301</creationdate><title>Plant hosts control microbial denitrification activity</title><author>Achouak, Wafa ; Abrouk, Danis ; Guyonnet, Julien ; Barakat, Mohamed ; Ortet, Philippe ; Simon, Laurent ; Lerondelle, Catherine ; Heulin, Thierry ; Haichar, Feth El Zahar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-920ba48141744c300078f71bb2ca9975f18da43dd3a5c029c941f0ab5714810a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alfalfa</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Brassica</topic><topic>Denitrification</topic><topic>Denitrification - genetics</topic><topic>Ecology</topic><topic>Environmental Sciences</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Flowers & plants</topic><topic>Gas chromatography</topic><topic>Gene expression</topic><topic>Host Microbial Interactions</topic><topic>Host plants</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Microbiota - genetics</topic><topic>Microbiota - physiology</topic><topic>Microorganisms</topic><topic>NirK protein</topic><topic>Plant Exudates</topic><topic>Plant Roots - chemistry</topic><topic>Plant Roots - classification</topic><topic>Plant Roots - microbiology</topic><topic>Plant species</topic><topic>Plant tissues</topic><topic>Plants - chemistry</topic><topic>Plants - classification</topic><topic>Plants - microbiology</topic><topic>Power plants</topic><topic>Rhizosphere</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Soils</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achouak, Wafa</creatorcontrib><creatorcontrib>Abrouk, Danis</creatorcontrib><creatorcontrib>Guyonnet, Julien</creatorcontrib><creatorcontrib>Barakat, Mohamed</creatorcontrib><creatorcontrib>Ortet, Philippe</creatorcontrib><creatorcontrib>Simon, Laurent</creatorcontrib><creatorcontrib>Lerondelle, Catherine</creatorcontrib><creatorcontrib>Heulin, Thierry</creatorcontrib><creatorcontrib>Haichar, Feth El Zahar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achouak, Wafa</au><au>Abrouk, Danis</au><au>Guyonnet, Julien</au><au>Barakat, Mohamed</au><au>Ortet, Philippe</au><au>Simon, Laurent</au><au>Lerondelle, Catherine</au><au>Heulin, Thierry</au><au>Haichar, Feth El Zahar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant hosts control microbial denitrification activity</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>95</volume><issue>3</issue><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30726948</pmid><doi>10.1093/femsec/fiz021</doi><orcidid>https://orcid.org/0000-0003-3687-0529</orcidid><orcidid>https://orcid.org/0000-0002-7162-5388</orcidid><orcidid>https://orcid.org/0000-0002-2648-8978</orcidid><orcidid>https://orcid.org/0000-0002-9286-0061</orcidid><orcidid>https://orcid.org/0000-0003-4297-6661</orcidid><orcidid>https://orcid.org/0000-0003-1389-9871</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-6941 |
ispartof | FEMS microbiology ecology, 2019-03, Vol.95 (3) |
issn | 1574-6941 0168-6496 1574-6941 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_02096084v1 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alfalfa Bacteria - classification Bacteria - genetics Bacteria - metabolism Brassica Denitrification Denitrification - genetics Ecology Environmental Sciences Exudates Exudation Flowers & plants Gas chromatography Gene expression Host Microbial Interactions Host plants Life Sciences Metabolites Microbiology Microbiota Microbiota - genetics Microbiota - physiology Microorganisms NirK protein Plant Exudates Plant Roots - chemistry Plant Roots - classification Plant Roots - microbiology Plant species Plant tissues Plants - chemistry Plants - classification Plants - microbiology Power plants Rhizosphere RNA, Ribosomal, 16S - genetics rRNA 16S Soil - chemistry Soil Microbiology Soils Wheat |
title | Plant hosts control microbial denitrification activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20hosts%20control%20microbial%20denitrification%20activity&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Achouak,%20Wafa&rft.date=2019-03-01&rft.volume=95&rft.issue=3&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiz021&rft_dat=%3Cproquest_hal_p%3E2400609245%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400609245&rft_id=info:pmid/30726948&rfr_iscdi=true |