Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications

Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (43), p.2278-22716
Hauptverfasser: Platek, A, Piwek, J, Fic, K, Schubert, T, Gentile, P, Bidan, G, Frackowiak, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22716
container_issue 43
container_start_page 2278
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 5
creator Platek, A
Piwek, J
Fic, K
Schubert, T
Gentile, P
Bidan, G
Frackowiak, E
description Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm −2 resulted in 2 mJ cm −2 energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered. Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized.
doi_str_mv 10.1039/c7ta08175h
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01988904v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010898330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</originalsourceid><addsrcrecordid>eNp90cFLwzAUBvAiCg7dxbsQ8aRQfVnWJTmOMZ0w8KLn8HxNWUbX1KRV_O_NrMybuSQkPz5e-LLsgsMdB6HvSXYIistic5SNJlBALqd6dnw4K3WajWPcQloKYKb1KPtc1pa64Gljd46wZq0NlQ87bMgyX7Hoake-YQ02Pnahp64PNjLXsNp_5p3dJY_7O-Z844jV7r13ZWQpg6XA4O2Qv3_Dtk1h2CUZz7OTCutox7_7Wfb6sHxZrPL18-PTYr7OSSjockkoLeqyIijLggqLXKEVpLUkwKpCWQohZrJ4m3Au3vi04BMBhRAo5IyXJM6ymyF3g7Vpg9th-DIenVnN14YsGuBaKQ3TD57s9WDb4N97Gzuz9X1o0nhmAhyUVkJAUreDSp-LMdjqEMvB7HswC_ky_-lhlfDVgEOkg_vrybRllczlf0Z8A0BdknU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010898330</pqid></control><display><type>article</type><title>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Platek, A ; Piwek, J ; Fic, K ; Schubert, T ; Gentile, P ; Bidan, G ; Frackowiak, E</creator><creatorcontrib>Platek, A ; Piwek, J ; Fic, K ; Schubert, T ; Gentile, P ; Bidan, G ; Frackowiak, E</creatorcontrib><description>Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm −2 resulted in 2 mJ cm −2 energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered. Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta08175h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitance ; Condensed Matter ; Electric power ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Energy ; Energy output ; Engineering Sciences ; Freezing ; Ionic liquids ; Ions ; Low temperature ; Materials ; Materials Science ; Melting points ; Micro and nanotechnologies ; Microelectronics ; Nanostructure ; Physics ; Silicon ; Solvents</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (43), p.2278-22716</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</citedby><cites>FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</cites><orcidid>0000-0003-2518-3950 ; 0000-0002-5870-7119 ; 0000-0002-1547-4247 ; 0000-0002-9034-1284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01988904$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Platek, A</creatorcontrib><creatorcontrib>Piwek, J</creatorcontrib><creatorcontrib>Fic, K</creatorcontrib><creatorcontrib>Schubert, T</creatorcontrib><creatorcontrib>Gentile, P</creatorcontrib><creatorcontrib>Bidan, G</creatorcontrib><creatorcontrib>Frackowiak, E</creatorcontrib><title>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm −2 resulted in 2 mJ cm −2 energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered. Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized.</description><subject>Capacitance</subject><subject>Condensed Matter</subject><subject>Electric power</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy output</subject><subject>Engineering Sciences</subject><subject>Freezing</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Low temperature</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Melting points</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Silicon</subject><subject>Solvents</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90cFLwzAUBvAiCg7dxbsQ8aRQfVnWJTmOMZ0w8KLn8HxNWUbX1KRV_O_NrMybuSQkPz5e-LLsgsMdB6HvSXYIistic5SNJlBALqd6dnw4K3WajWPcQloKYKb1KPtc1pa64Gljd46wZq0NlQ87bMgyX7Hoake-YQ02Pnahp64PNjLXsNp_5p3dJY_7O-Z844jV7r13ZWQpg6XA4O2Qv3_Dtk1h2CUZz7OTCutox7_7Wfb6sHxZrPL18-PTYr7OSSjockkoLeqyIijLggqLXKEVpLUkwKpCWQohZrJ4m3Au3vi04BMBhRAo5IyXJM6ymyF3g7Vpg9th-DIenVnN14YsGuBaKQ3TD57s9WDb4N97Gzuz9X1o0nhmAhyUVkJAUreDSp-LMdjqEMvB7HswC_ky_-lhlfDVgEOkg_vrybRllczlf0Z8A0BdknU</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Platek, A</creator><creator>Piwek, J</creator><creator>Fic, K</creator><creator>Schubert, T</creator><creator>Gentile, P</creator><creator>Bidan, G</creator><creator>Frackowiak, E</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2518-3950</orcidid><orcidid>https://orcid.org/0000-0002-5870-7119</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0002-9034-1284</orcidid></search><sort><creationdate>2017</creationdate><title>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</title><author>Platek, A ; Piwek, J ; Fic, K ; Schubert, T ; Gentile, P ; Bidan, G ; Frackowiak, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitance</topic><topic>Condensed Matter</topic><topic>Electric power</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy output</topic><topic>Engineering Sciences</topic><topic>Freezing</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Low temperature</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Melting points</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Silicon</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platek, A</creatorcontrib><creatorcontrib>Piwek, J</creatorcontrib><creatorcontrib>Fic, K</creatorcontrib><creatorcontrib>Schubert, T</creatorcontrib><creatorcontrib>Gentile, P</creatorcontrib><creatorcontrib>Bidan, G</creatorcontrib><creatorcontrib>Frackowiak, E</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platek, A</au><au>Piwek, J</au><au>Fic, K</au><au>Schubert, T</au><au>Gentile, P</au><au>Bidan, G</au><au>Frackowiak, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>43</issue><spage>2278</spage><epage>22716</epage><pages>2278-22716</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm −2 resulted in 2 mJ cm −2 energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered. Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta08175h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2518-3950</orcidid><orcidid>https://orcid.org/0000-0002-5870-7119</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0002-9034-1284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (43), p.2278-22716
issn 2050-7488
2050-7496
language eng
recordid cdi_hal_primary_oai_HAL_cea_01988904v1
source Royal Society Of Chemistry Journals 2008-
subjects Capacitance
Condensed Matter
Electric power
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Energy
Energy output
Engineering Sciences
Freezing
Ionic liquids
Ions
Low temperature
Materials
Materials Science
Melting points
Micro and nanotechnologies
Microelectronics
Nanostructure
Physics
Silicon
Solvents
title Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20performance%20of%20silicon%20nanostructures%20in%20low-temperature%20ionic%20liquids%20for%20microelectronic%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Platek,%20A&rft.date=2017&rft.volume=5&rft.issue=43&rft.spage=2278&rft.epage=22716&rft.pages=2278-22716&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta08175h&rft_dat=%3Cproquest_hal_p%3E2010898330%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010898330&rft_id=info:pmid/&rfr_iscdi=true