Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications
Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (43), p.2278-22716 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22716 |
---|---|
container_issue | 43 |
container_start_page | 2278 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 5 |
creator | Platek, A Piwek, J Fic, K Schubert, T Gentile, P Bidan, G Frackowiak, E |
description | Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm
−2
resulted in 2 mJ cm
−2
energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered.
Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized. |
doi_str_mv | 10.1039/c7ta08175h |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01988904v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010898330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</originalsourceid><addsrcrecordid>eNp90cFLwzAUBvAiCg7dxbsQ8aRQfVnWJTmOMZ0w8KLn8HxNWUbX1KRV_O_NrMybuSQkPz5e-LLsgsMdB6HvSXYIistic5SNJlBALqd6dnw4K3WajWPcQloKYKb1KPtc1pa64Gljd46wZq0NlQ87bMgyX7Hoake-YQ02Pnahp64PNjLXsNp_5p3dJY_7O-Z844jV7r13ZWQpg6XA4O2Qv3_Dtk1h2CUZz7OTCutox7_7Wfb6sHxZrPL18-PTYr7OSSjockkoLeqyIijLggqLXKEVpLUkwKpCWQohZrJ4m3Au3vi04BMBhRAo5IyXJM6ymyF3g7Vpg9th-DIenVnN14YsGuBaKQ3TD57s9WDb4N97Gzuz9X1o0nhmAhyUVkJAUreDSp-LMdjqEMvB7HswC_ky_-lhlfDVgEOkg_vrybRllczlf0Z8A0BdknU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010898330</pqid></control><display><type>article</type><title>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Platek, A ; Piwek, J ; Fic, K ; Schubert, T ; Gentile, P ; Bidan, G ; Frackowiak, E</creator><creatorcontrib>Platek, A ; Piwek, J ; Fic, K ; Schubert, T ; Gentile, P ; Bidan, G ; Frackowiak, E</creatorcontrib><description>Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm
−2
resulted in 2 mJ cm
−2
energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered.
Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta08175h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitance ; Condensed Matter ; Electric power ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrodes ; Electrolytes ; Energy ; Energy output ; Engineering Sciences ; Freezing ; Ionic liquids ; Ions ; Low temperature ; Materials ; Materials Science ; Melting points ; Micro and nanotechnologies ; Microelectronics ; Nanostructure ; Physics ; Silicon ; Solvents</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (43), p.2278-22716</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</citedby><cites>FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</cites><orcidid>0000-0003-2518-3950 ; 0000-0002-5870-7119 ; 0000-0002-1547-4247 ; 0000-0002-9034-1284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01988904$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Platek, A</creatorcontrib><creatorcontrib>Piwek, J</creatorcontrib><creatorcontrib>Fic, K</creatorcontrib><creatorcontrib>Schubert, T</creatorcontrib><creatorcontrib>Gentile, P</creatorcontrib><creatorcontrib>Bidan, G</creatorcontrib><creatorcontrib>Frackowiak, E</creatorcontrib><title>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm
−2
resulted in 2 mJ cm
−2
energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered.
Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized.</description><subject>Capacitance</subject><subject>Condensed Matter</subject><subject>Electric power</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy output</subject><subject>Engineering Sciences</subject><subject>Freezing</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>Low temperature</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Melting points</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Silicon</subject><subject>Solvents</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90cFLwzAUBvAiCg7dxbsQ8aRQfVnWJTmOMZ0w8KLn8HxNWUbX1KRV_O_NrMybuSQkPz5e-LLsgsMdB6HvSXYIistic5SNJlBALqd6dnw4K3WajWPcQloKYKb1KPtc1pa64Gljd46wZq0NlQ87bMgyX7Hoake-YQ02Pnahp64PNjLXsNp_5p3dJY_7O-Z844jV7r13ZWQpg6XA4O2Qv3_Dtk1h2CUZz7OTCutox7_7Wfb6sHxZrPL18-PTYr7OSSjockkoLeqyIijLggqLXKEVpLUkwKpCWQohZrJ4m3Au3vi04BMBhRAo5IyXJM6ymyF3g7Vpg9th-DIenVnN14YsGuBaKQ3TD57s9WDb4N97Gzuz9X1o0nhmAhyUVkJAUreDSp-LMdjqEMvB7HswC_ky_-lhlfDVgEOkg_vrybRllczlf0Z8A0BdknU</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Platek, A</creator><creator>Piwek, J</creator><creator>Fic, K</creator><creator>Schubert, T</creator><creator>Gentile, P</creator><creator>Bidan, G</creator><creator>Frackowiak, E</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2518-3950</orcidid><orcidid>https://orcid.org/0000-0002-5870-7119</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0002-9034-1284</orcidid></search><sort><creationdate>2017</creationdate><title>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</title><author>Platek, A ; Piwek, J ; Fic, K ; Schubert, T ; Gentile, P ; Bidan, G ; Frackowiak, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-7ca7ea9dfc0dd5c5ea18ae3c997c0affa7d333675b2113b1451230533a3761dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Capacitance</topic><topic>Condensed Matter</topic><topic>Electric power</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy output</topic><topic>Engineering Sciences</topic><topic>Freezing</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>Low temperature</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Melting points</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Silicon</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platek, A</creatorcontrib><creatorcontrib>Piwek, J</creatorcontrib><creatorcontrib>Fic, K</creatorcontrib><creatorcontrib>Schubert, T</creatorcontrib><creatorcontrib>Gentile, P</creatorcontrib><creatorcontrib>Bidan, G</creatorcontrib><creatorcontrib>Frackowiak, E</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platek, A</au><au>Piwek, J</au><au>Fic, K</au><au>Schubert, T</au><au>Gentile, P</au><au>Bidan, G</au><au>Frackowiak, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>43</issue><spage>2278</spage><epage>22716</epage><pages>2278-22716</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (up to −40 °C) has been realized. In order to avoid the freezing of the electrolyte solution, two ionic liquids with low freezing points have been synthesized and applied as the electrolyte. Silicon nanotrees selected as the most useful electrode material have been combined with the mixture of two miscible ionic liquids (EMIM TFSI + AMIM TFSI). This allowed the operational voltage equal to 3 V to be achieved. The specific capacitance of 377 μF cm
−2
resulted in 2 mJ cm
−2
energy output. Furthermore, all electrode materials subjected to the investigation were able to deliver the energy even at high frequency (120 Hz). Hence, the application in microelectronics has been considered.
Successful implementation of silicon nanostructures as suitable electrodes for microcapacitors performing at low temperatures (down to −40 °C) has been realized.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta08175h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2518-3950</orcidid><orcidid>https://orcid.org/0000-0002-5870-7119</orcidid><orcidid>https://orcid.org/0000-0002-1547-4247</orcidid><orcidid>https://orcid.org/0000-0002-9034-1284</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (43), p.2278-22716 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_01988904v1 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Capacitance Condensed Matter Electric power Electrochemical analysis Electrochemistry Electrode materials Electrodes Electrolytes Energy Energy output Engineering Sciences Freezing Ionic liquids Ions Low temperature Materials Materials Science Melting points Micro and nanotechnologies Microelectronics Nanostructure Physics Silicon Solvents |
title | Electrochemical performance of silicon nanostructures in low-temperature ionic liquids for microelectronic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20performance%20of%20silicon%20nanostructures%20in%20low-temperature%20ionic%20liquids%20for%20microelectronic%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Platek,%20A&rft.date=2017&rft.volume=5&rft.issue=43&rft.spage=2278&rft.epage=22716&rft.pages=2278-22716&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta08175h&rft_dat=%3Cproquest_hal_p%3E2010898330%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010898330&rft_id=info:pmid/&rfr_iscdi=true |