Filter bank learning for signal classification
This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learni...
Gespeichert in:
Veröffentlicht in: | Signal processing 2015-08, Vol.113, p.124-137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | |
container_start_page | 124 |
container_title | Signal processing |
container_volume | 113 |
creator | Sangnier, M. Gauthier, J. Rakotomamonjy, A. |
description | This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method.
[Display omitted]
•We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification. |
doi_str_mv | 10.1016/j.sigpro.2014.12.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01865050v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168415000043</els_id><sourcerecordid>1677927665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EEqXwDxgywpDgc2K7WZCqilKkSiwwW7ZzLi5pUuy0Ev8eV0GMTLe870n3CLkFWgAF8bAtot_sQ18wClUBrKBsdkYmMJMsl5zLczJJGM9BzKpLchXjllIKpaATUix9O2DIjO4-sxZ16Hy3yVwfsqTsdJvZVsfonbd68H13TS6cbiPe_N4peV8-vS1W-fr1-WUxX-e2gnrIK9k0JcNSoGkcrxEqXdbcCN6UUEmJxhjKGmat5ADcMaadtYZSZzTTusZySu5H74du1T74nQ7fqtdereZrZVErCjPBKadHSOzdyKYCXweMg9r5aLFtdYf9ISoQUtZMCsETWo2oDX2MAd2fG6g6pVRbNaZUp5QKmEop0-xxnGF6-egxqGg9dhYbH9AOqun9_4Ifm-l98g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677927665</pqid></control><display><type>article</type><title>Filter bank learning for signal classification</title><source>Elsevier ScienceDirect Journals</source><creator>Sangnier, M. ; Gauthier, J. ; Rakotomamonjy, A.</creator><creatorcontrib>Sangnier, M. ; Gauthier, J. ; Rakotomamonjy, A.</creatorcontrib><description>This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method.
[Display omitted]
•We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2014.12.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Appeals ; Applications ; Classification ; Computer Science ; Construction ; Filter bank ; Filter banks ; Kernel learning ; Kernels ; Learning ; Machine Learning ; Mathematics ; Metric Geometry ; Representations ; Signal and Image Processing ; Signal classification ; Statistics ; SVM</subject><ispartof>Signal processing, 2015-08, Vol.113, p.124-137</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</citedby><cites>FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</cites><orcidid>0000-0002-4210-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2014.12.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01865050$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangnier, M.</creatorcontrib><creatorcontrib>Gauthier, J.</creatorcontrib><creatorcontrib>Rakotomamonjy, A.</creatorcontrib><title>Filter bank learning for signal classification</title><title>Signal processing</title><description>This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method.
[Display omitted]
•We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification.</description><subject>Appeals</subject><subject>Applications</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Filter bank</subject><subject>Filter banks</subject><subject>Kernel learning</subject><subject>Kernels</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Metric Geometry</subject><subject>Representations</subject><subject>Signal and Image Processing</subject><subject>Signal classification</subject><subject>Statistics</subject><subject>SVM</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRi0EEqXwDxgywpDgc2K7WZCqilKkSiwwW7ZzLi5pUuy0Ev8eV0GMTLe870n3CLkFWgAF8bAtot_sQ18wClUBrKBsdkYmMJMsl5zLczJJGM9BzKpLchXjllIKpaATUix9O2DIjO4-sxZ16Hy3yVwfsqTsdJvZVsfonbd68H13TS6cbiPe_N4peV8-vS1W-fr1-WUxX-e2gnrIK9k0JcNSoGkcrxEqXdbcCN6UUEmJxhjKGmat5ADcMaadtYZSZzTTusZySu5H74du1T74nQ7fqtdereZrZVErCjPBKadHSOzdyKYCXweMg9r5aLFtdYf9ISoQUtZMCsETWo2oDX2MAd2fG6g6pVRbNaZUp5QKmEop0-xxnGF6-egxqGg9dhYbH9AOqun9_4Ifm-l98g</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Sangnier, M.</creator><creator>Gauthier, J.</creator><creator>Rakotomamonjy, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4210-7792</orcidid></search><sort><creationdate>20150801</creationdate><title>Filter bank learning for signal classification</title><author>Sangnier, M. ; Gauthier, J. ; Rakotomamonjy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Appeals</topic><topic>Applications</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Filter bank</topic><topic>Filter banks</topic><topic>Kernel learning</topic><topic>Kernels</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Metric Geometry</topic><topic>Representations</topic><topic>Signal and Image Processing</topic><topic>Signal classification</topic><topic>Statistics</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangnier, M.</creatorcontrib><creatorcontrib>Gauthier, J.</creatorcontrib><creatorcontrib>Rakotomamonjy, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangnier, M.</au><au>Gauthier, J.</au><au>Rakotomamonjy, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter bank learning for signal classification</atitle><jtitle>Signal processing</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>113</volume><spage>124</spage><epage>137</epage><pages>124-137</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method.
[Display omitted]
•We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2014.12.028</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4210-7792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2015-08, Vol.113, p.124-137 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_01865050v1 |
source | Elsevier ScienceDirect Journals |
subjects | Appeals Applications Classification Computer Science Construction Filter bank Filter banks Kernel learning Kernels Learning Machine Learning Mathematics Metric Geometry Representations Signal and Image Processing Signal classification Statistics SVM |
title | Filter bank learning for signal classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter%20bank%20learning%20for%20signal%20classification&rft.jtitle=Signal%20processing&rft.au=Sangnier,%20M.&rft.date=2015-08-01&rft.volume=113&rft.spage=124&rft.epage=137&rft.pages=124-137&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2014.12.028&rft_dat=%3Cproquest_hal_p%3E1677927665%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677927665&rft_id=info:pmid/&rft_els_id=S0165168415000043&rfr_iscdi=true |