Filter bank learning for signal classification

This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2015-08, Vol.113, p.124-137
Hauptverfasser: Sangnier, M., Gauthier, J., Rakotomamonjy, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue
container_start_page 124
container_title Signal processing
container_volume 113
creator Sangnier, M.
Gauthier, J.
Rakotomamonjy, A.
description This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method. [Display omitted] •We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification.
doi_str_mv 10.1016/j.sigpro.2014.12.028
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01865050v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168415000043</els_id><sourcerecordid>1677927665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQRi0EEqXwDxgywpDgc2K7WZCqilKkSiwwW7ZzLi5pUuy0Ev8eV0GMTLe870n3CLkFWgAF8bAtot_sQ18wClUBrKBsdkYmMJMsl5zLczJJGM9BzKpLchXjllIKpaATUix9O2DIjO4-sxZ16Hy3yVwfsqTsdJvZVsfonbd68H13TS6cbiPe_N4peV8-vS1W-fr1-WUxX-e2gnrIK9k0JcNSoGkcrxEqXdbcCN6UUEmJxhjKGmat5ADcMaadtYZSZzTTusZySu5H74du1T74nQ7fqtdereZrZVErCjPBKadHSOzdyKYCXweMg9r5aLFtdYf9ISoQUtZMCsETWo2oDX2MAd2fG6g6pVRbNaZUp5QKmEop0-xxnGF6-egxqGg9dhYbH9AOqun9_4Ifm-l98g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677927665</pqid></control><display><type>article</type><title>Filter bank learning for signal classification</title><source>Elsevier ScienceDirect Journals</source><creator>Sangnier, M. ; Gauthier, J. ; Rakotomamonjy, A.</creator><creatorcontrib>Sangnier, M. ; Gauthier, J. ; Rakotomamonjy, A.</creatorcontrib><description>This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method. [Display omitted] •We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2014.12.028</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Appeals ; Applications ; Classification ; Computer Science ; Construction ; Filter bank ; Filter banks ; Kernel learning ; Kernels ; Learning ; Machine Learning ; Mathematics ; Metric Geometry ; Representations ; Signal and Image Processing ; Signal classification ; Statistics ; SVM</subject><ispartof>Signal processing, 2015-08, Vol.113, p.124-137</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</citedby><cites>FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</cites><orcidid>0000-0002-4210-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2014.12.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01865050$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sangnier, M.</creatorcontrib><creatorcontrib>Gauthier, J.</creatorcontrib><creatorcontrib>Rakotomamonjy, A.</creatorcontrib><title>Filter bank learning for signal classification</title><title>Signal processing</title><description>This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method. [Display omitted] •We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification.</description><subject>Appeals</subject><subject>Applications</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Filter bank</subject><subject>Filter banks</subject><subject>Kernel learning</subject><subject>Kernels</subject><subject>Learning</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Metric Geometry</subject><subject>Representations</subject><subject>Signal and Image Processing</subject><subject>Signal classification</subject><subject>Statistics</subject><subject>SVM</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQRi0EEqXwDxgywpDgc2K7WZCqilKkSiwwW7ZzLi5pUuy0Ev8eV0GMTLe870n3CLkFWgAF8bAtot_sQ18wClUBrKBsdkYmMJMsl5zLczJJGM9BzKpLchXjllIKpaATUix9O2DIjO4-sxZ16Hy3yVwfsqTsdJvZVsfonbd68H13TS6cbiPe_N4peV8-vS1W-fr1-WUxX-e2gnrIK9k0JcNSoGkcrxEqXdbcCN6UUEmJxhjKGmat5ADcMaadtYZSZzTTusZySu5H74du1T74nQ7fqtdereZrZVErCjPBKadHSOzdyKYCXweMg9r5aLFtdYf9ISoQUtZMCsETWo2oDX2MAd2fG6g6pVRbNaZUp5QKmEop0-xxnGF6-egxqGg9dhYbH9AOqun9_4Ifm-l98g</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Sangnier, M.</creator><creator>Gauthier, J.</creator><creator>Rakotomamonjy, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4210-7792</orcidid></search><sort><creationdate>20150801</creationdate><title>Filter bank learning for signal classification</title><author>Sangnier, M. ; Gauthier, J. ; Rakotomamonjy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-47dd32e36ebdf59e14a395b65d31477ebbb02d2cc75115f22afccb00fba2aa9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Appeals</topic><topic>Applications</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Filter bank</topic><topic>Filter banks</topic><topic>Kernel learning</topic><topic>Kernels</topic><topic>Learning</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Metric Geometry</topic><topic>Representations</topic><topic>Signal and Image Processing</topic><topic>Signal classification</topic><topic>Statistics</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangnier, M.</creatorcontrib><creatorcontrib>Gauthier, J.</creatorcontrib><creatorcontrib>Rakotomamonjy, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangnier, M.</au><au>Gauthier, J.</au><au>Rakotomamonjy, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter bank learning for signal classification</atitle><jtitle>Signal processing</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>113</volume><spage>124</spage><epage>137</epage><pages>124-137</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>This paper addresses the problem of feature extraction for signal classification. It proposes to build features by designing a data-driven filter bank and by pooling the time–frequency representation to provide time-invariant features. For this purpose, our work tackles the problem of jointly learning the filters of a filter bank with a support vector machine. It is shown that, in a restrictive case (but consistent to prevent overfitting), the problem boils down to a multiple kernel learning instance with infinitely many kernels. To solve such a problem, we build upon existing methods and propose an active constraint algorithm able to handle a non-convex combination of an infinite number of kernels. Numerical experiments on both a brain–computer interface dataset and a scene classification problem prove empirically the appeal of our method. [Display omitted] •We propose a method of feature extraction, using a large-margin framework.•We extend generalized multiple kernel learning to infinitely many kernels.•We take a fresh look at learning convolutional features for signal classification.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2014.12.028</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4210-7792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2015-08, Vol.113, p.124-137
issn 0165-1684
1872-7557
language eng
recordid cdi_hal_primary_oai_HAL_cea_01865050v1
source Elsevier ScienceDirect Journals
subjects Appeals
Applications
Classification
Computer Science
Construction
Filter bank
Filter banks
Kernel learning
Kernels
Learning
Machine Learning
Mathematics
Metric Geometry
Representations
Signal and Image Processing
Signal classification
Statistics
SVM
title Filter bank learning for signal classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter%20bank%20learning%20for%20signal%20classification&rft.jtitle=Signal%20processing&rft.au=Sangnier,%20M.&rft.date=2015-08-01&rft.volume=113&rft.spage=124&rft.epage=137&rft.pages=124-137&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2014.12.028&rft_dat=%3Cproquest_hal_p%3E1677927665%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677927665&rft_id=info:pmid/&rft_els_id=S0165168415000043&rfr_iscdi=true