PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures

X‐ray imaging techniques have undergone a remarkable development during the past decade, taking advantage of coherent X‐ray sources. Among these techniques, ptychography allows reconstruction of the specimen and the illumination probe from a series of diffraction patterns without any prior knowledge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2016-10, Vol.49 (5), p.1842-1848
Hauptverfasser: Mandula, Ondřej, Elzo Aizarna, Marta, Eymery, Joël, Burghammer, Manfred, Favre-Nicolin, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1848
container_issue 5
container_start_page 1842
container_title Journal of applied crystallography
container_volume 49
creator Mandula, Ondřej
Elzo Aizarna, Marta
Eymery, Joël
Burghammer, Manfred
Favre-Nicolin, Vincent
description X‐ray imaging techniques have undergone a remarkable development during the past decade, taking advantage of coherent X‐ray sources. Among these techniques, ptychography allows reconstruction of the specimen and the illumination probe from a series of diffraction patterns without any prior knowledge about the sample. However, the reconstruction of the ptychographic data remains challenging and the reconstruction software is often not publicly available. Presented here is an open‐source library for the reconstruction of two‐dimensional ptychographic data, written in Python. This library implements existing algorithms, with examples of data reconstruction on both simulated and experimental (Bragg ptychography on heterogeneous strained InAs/GaAs nanowires) data sets. It can be used for educational (simulation) purposes or experimental data analysis, and also features an OpenCL version of the ptychography algorithm for high‐performance computing. An open‐source Python library, PyNX.ptycho, is presented for the reconstruction of ptychographic data, optionally using OpenCL for high‐performance computing. The article includes examples of analysis for both simulated and experimental data.
doi_str_mv 10.1107/S1600576716012279
format Article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01851580v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_4Z90KLMQ_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3677-9b3240518d25ac7e0cada0ff11cbd823c41f286b91c60da146f5460698eaaa793</originalsourceid><addsrcrecordid>eNqFkE9Pg0AQxYnRxFr9AN64ekB3FtgFb02jrYq1_q9eNsOy26IUmoWqfHshmMbEg6c3efN-k8mzrEMgxwCEn9wDI8TnjDcKlPJwy-q1ltN627_mXWuvLN8IAcYp7Vkv03oyO55WtVwUpzbasliu1lWaz-0sjQ2a2taFsWeOwbrZLZRReWUnqdYGZZUWuZ0ucd7GC23nmBdlZdayWhtV7ls7GrNSHfxo33o8P3sYjp3oZnQxHESOdBnnThi71CM-BAn1UXJFJCZItAaQcRJQV3qgacDiECQjCYLHtO8xwsJAISIP3b511N1dYCZWpvnH1KLAVIwHkZAKBYHABz8gH9BkoctKU5SlUXoDABFtj-JPjw0Tdsxnmqn6f0BcDu_o09gnHm9Yp2PTslJfGxbNu2Dc5b54noyE9xqSq-j6Vkzdb8JKhK8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Mandula, Ondřej ; Elzo Aizarna, Marta ; Eymery, Joël ; Burghammer, Manfred ; Favre-Nicolin, Vincent</creator><creatorcontrib>Mandula, Ondřej ; Elzo Aizarna, Marta ; Eymery, Joël ; Burghammer, Manfred ; Favre-Nicolin, Vincent</creatorcontrib><description>X‐ray imaging techniques have undergone a remarkable development during the past decade, taking advantage of coherent X‐ray sources. Among these techniques, ptychography allows reconstruction of the specimen and the illumination probe from a series of diffraction patterns without any prior knowledge about the sample. However, the reconstruction of the ptychographic data remains challenging and the reconstruction software is often not publicly available. Presented here is an open‐source library for the reconstruction of two‐dimensional ptychographic data, written in Python. This library implements existing algorithms, with examples of data reconstruction on both simulated and experimental (Bragg ptychography on heterogeneous strained InAs/GaAs nanowires) data sets. It can be used for educational (simulation) purposes or experimental data analysis, and also features an OpenCL version of the ptychography algorithm for high‐performance computing. An open‐source Python library, PyNX.ptycho, is presented for the reconstruction of ptychographic data, optionally using OpenCL for high‐performance computing. The article includes examples of analysis for both simulated and experimental data.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576716012279</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>nanostructures ; Physics ; ptychography ; PyNX.Ptycho ; X-ray coherent diffraction imaging</subject><ispartof>Journal of applied crystallography, 2016-10, Vol.49 (5), p.1842-1848</ispartof><rights>International Union of Crystallography, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3677-9b3240518d25ac7e0cada0ff11cbd823c41f286b91c60da146f5460698eaaa793</citedby><cites>FETCH-LOGICAL-c3677-9b3240518d25ac7e0cada0ff11cbd823c41f286b91c60da146f5460698eaaa793</cites><orcidid>0000-0002-4216-1166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576716012279$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576716012279$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01851580$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandula, Ondřej</creatorcontrib><creatorcontrib>Elzo Aizarna, Marta</creatorcontrib><creatorcontrib>Eymery, Joël</creatorcontrib><creatorcontrib>Burghammer, Manfred</creatorcontrib><creatorcontrib>Favre-Nicolin, Vincent</creatorcontrib><title>PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures</title><title>Journal of applied crystallography</title><addtitle>J. Appl. Cryst</addtitle><description>X‐ray imaging techniques have undergone a remarkable development during the past decade, taking advantage of coherent X‐ray sources. Among these techniques, ptychography allows reconstruction of the specimen and the illumination probe from a series of diffraction patterns without any prior knowledge about the sample. However, the reconstruction of the ptychographic data remains challenging and the reconstruction software is often not publicly available. Presented here is an open‐source library for the reconstruction of two‐dimensional ptychographic data, written in Python. This library implements existing algorithms, with examples of data reconstruction on both simulated and experimental (Bragg ptychography on heterogeneous strained InAs/GaAs nanowires) data sets. It can be used for educational (simulation) purposes or experimental data analysis, and also features an OpenCL version of the ptychography algorithm for high‐performance computing. An open‐source Python library, PyNX.ptycho, is presented for the reconstruction of ptychographic data, optionally using OpenCL for high‐performance computing. The article includes examples of analysis for both simulated and experimental data.</description><subject>nanostructures</subject><subject>Physics</subject><subject>ptychography</subject><subject>PyNX.Ptycho</subject><subject>X-ray coherent diffraction imaging</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Pg0AQxYnRxFr9AN64ekB3FtgFb02jrYq1_q9eNsOy26IUmoWqfHshmMbEg6c3efN-k8mzrEMgxwCEn9wDI8TnjDcKlPJwy-q1ltN627_mXWuvLN8IAcYp7Vkv03oyO55WtVwUpzbasliu1lWaz-0sjQ2a2taFsWeOwbrZLZRReWUnqdYGZZUWuZ0ucd7GC23nmBdlZdayWhtV7ls7GrNSHfxo33o8P3sYjp3oZnQxHESOdBnnThi71CM-BAn1UXJFJCZItAaQcRJQV3qgacDiECQjCYLHtO8xwsJAISIP3b511N1dYCZWpvnH1KLAVIwHkZAKBYHABz8gH9BkoctKU5SlUXoDABFtj-JPjw0Tdsxnmqn6f0BcDu_o09gnHm9Yp2PTslJfGxbNu2Dc5b54noyE9xqSq-j6Vkzdb8JKhK8</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Mandula, Ondřej</creator><creator>Elzo Aizarna, Marta</creator><creator>Eymery, Joël</creator><creator>Burghammer, Manfred</creator><creator>Favre-Nicolin, Vincent</creator><general>International Union of Crystallography</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4216-1166</orcidid></search><sort><creationdate>201610</creationdate><title>PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures</title><author>Mandula, Ondřej ; Elzo Aizarna, Marta ; Eymery, Joël ; Burghammer, Manfred ; Favre-Nicolin, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3677-9b3240518d25ac7e0cada0ff11cbd823c41f286b91c60da146f5460698eaaa793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>nanostructures</topic><topic>Physics</topic><topic>ptychography</topic><topic>PyNX.Ptycho</topic><topic>X-ray coherent diffraction imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandula, Ondřej</creatorcontrib><creatorcontrib>Elzo Aizarna, Marta</creatorcontrib><creatorcontrib>Eymery, Joël</creatorcontrib><creatorcontrib>Burghammer, Manfred</creatorcontrib><creatorcontrib>Favre-Nicolin, Vincent</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandula, Ondřej</au><au>Elzo Aizarna, Marta</au><au>Eymery, Joël</au><au>Burghammer, Manfred</au><au>Favre-Nicolin, Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J. Appl. Cryst</addtitle><date>2016-10</date><risdate>2016</risdate><volume>49</volume><issue>5</issue><spage>1842</spage><epage>1848</epage><pages>1842-1848</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>X‐ray imaging techniques have undergone a remarkable development during the past decade, taking advantage of coherent X‐ray sources. Among these techniques, ptychography allows reconstruction of the specimen and the illumination probe from a series of diffraction patterns without any prior knowledge about the sample. However, the reconstruction of the ptychographic data remains challenging and the reconstruction software is often not publicly available. Presented here is an open‐source library for the reconstruction of two‐dimensional ptychographic data, written in Python. This library implements existing algorithms, with examples of data reconstruction on both simulated and experimental (Bragg ptychography on heterogeneous strained InAs/GaAs nanowires) data sets. It can be used for educational (simulation) purposes or experimental data analysis, and also features an OpenCL version of the ptychography algorithm for high‐performance computing. An open‐source Python library, PyNX.ptycho, is presented for the reconstruction of ptychographic data, optionally using OpenCL for high‐performance computing. The article includes examples of analysis for both simulated and experimental data.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576716012279</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4216-1166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2016-10, Vol.49 (5), p.1842-1848
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_hal_primary_oai_HAL_cea_01851580v1
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects nanostructures
Physics
ptychography
PyNX.Ptycho
X-ray coherent diffraction imaging
title PyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PyNX.Ptycho:%20a%20computing%20library%20for%20X-ray%20coherent%20diffraction%20imaging%20of%20nanostructures&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Mandula,%20Ond%C5%99ej&rft.date=2016-10&rft.volume=49&rft.issue=5&rft.spage=1842&rft.epage=1848&rft.pages=1842-1848&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576716012279&rft_dat=%3Cistex_hal_p%3Eark_67375_WNG_4Z90KLMQ_P%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true