Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations

The magnetic fields of solar-type stars are observed to cycle over decadal periods—11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-07, Vol.357 (6347), p.185-187
Hauptverfasser: Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A. S., do Nascimento, J.-D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 6347
container_start_page 185
container_title Science (American Association for the Advancement of Science)
container_volume 357
creator Strugarek, A.
Beaudoin, P.
Charbonneau, P.
Brun, A. S.
do Nascimento, J.-D.
description The magnetic fields of solar-type stars are observed to cycle over decadal periods—11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun’s cycle and those of other solar-type stars.
doi_str_mv 10.1126/science.aal3999
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01588365v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399429</jstor_id><sourcerecordid>26399429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-57600621f9c58abe2f4ede8372f2c49a39b17bedb9b1caf4ed0b3a78507437c53</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouq6ePSkFL3romo8maY4ifsHCgug5pOlUs7SJNq2y_94suyp4GGbgfWaYmRehE4JnhFBxFa0Db2FmTMuUUjtoQrDiuaKY7aIJxkzkJZb8AB3GuMQ4aYrtowNaSiywKCdo8QQ2eOta51-zGFrTZ8bXWRygXdedefUwOJvZlW0hZl9ueMt88AmHJNcrb7qQRdeNrRlc8PEI7TWmjXC8zVP0cnf7fPOQzxf3jzfX89wWlA45lwJjQUmjLC9NBbQpoIaSSdpQWyjDVEVkBXWVsjVrEVfMyJJjWTBpOZuiy83cN9Pq9951pl_pYJx-uJ5rC0ZjwsuSCf5JEnuxYd_78DFCHHTnol0f6CGMUZP0rhRc0ISe_0OXYex9uiRRslBKFOm1U3S1oWwfYuyh-d2AYL32RW990VtfUsfZdu5YdVD_8j9GJOB0AyzjEPo_XaT2gir2DXM1lHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974996420</pqid></control><display><type>article</type><title>Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Strugarek, A. ; Beaudoin, P. ; Charbonneau, P. ; Brun, A. S. ; do Nascimento, J.-D.</creator><creatorcontrib>Strugarek, A. ; Beaudoin, P. ; Charbonneau, P. ; Brun, A. S. ; do Nascimento, J.-D.</creatorcontrib><description>The magnetic fields of solar-type stars are observed to cycle over decadal periods—11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun’s cycle and those of other solar-type stars.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aal3999</identifier><identifier>PMID: 28706068</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Astrophysics ; Convection ; Coriolis force ; Fluid dynamics ; Fluid flow ; Luminosity ; Magnetic fields ; Magnetohydrodynamic simulation ; Magnetohydrodynamic turbulence ; Physics ; Simulation ; Solar magnetic field ; Stars ; Stellar activity ; Stellar magnetic fields ; Stellar rotation ; Sun ; Sunspot cycle</subject><ispartof>Science (American Association for the Advancement of Science), 2017-07, Vol.357 (6347), p.185-187</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-57600621f9c58abe2f4ede8372f2c49a39b17bedb9b1caf4ed0b3a78507437c53</citedby><cites>FETCH-LOGICAL-c422t-57600621f9c58abe2f4ede8372f2c49a39b17bedb9b1caf4ed0b3a78507437c53</cites><orcidid>0000-0002-9630-6463 ; 0000-0001-7804-2145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399429$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399429$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,782,786,805,887,2886,2887,27931,27932,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28706068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01588365$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Strugarek, A.</creatorcontrib><creatorcontrib>Beaudoin, P.</creatorcontrib><creatorcontrib>Charbonneau, P.</creatorcontrib><creatorcontrib>Brun, A. S.</creatorcontrib><creatorcontrib>do Nascimento, J.-D.</creatorcontrib><title>Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The magnetic fields of solar-type stars are observed to cycle over decadal periods—11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun’s cycle and those of other solar-type stars.</description><subject>Astrophysics</subject><subject>Convection</subject><subject>Coriolis force</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Luminosity</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamic turbulence</subject><subject>Physics</subject><subject>Simulation</subject><subject>Solar magnetic field</subject><subject>Stars</subject><subject>Stellar activity</subject><subject>Stellar magnetic fields</subject><subject>Stellar rotation</subject><subject>Sun</subject><subject>Sunspot cycle</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LxDAQhoMouq6ePSkFL3romo8maY4ifsHCgug5pOlUs7SJNq2y_94suyp4GGbgfWaYmRehE4JnhFBxFa0Db2FmTMuUUjtoQrDiuaKY7aIJxkzkJZb8AB3GuMQ4aYrtowNaSiywKCdo8QQ2eOta51-zGFrTZ8bXWRygXdedefUwOJvZlW0hZl9ueMt88AmHJNcrb7qQRdeNrRlc8PEI7TWmjXC8zVP0cnf7fPOQzxf3jzfX89wWlA45lwJjQUmjLC9NBbQpoIaSSdpQWyjDVEVkBXWVsjVrEVfMyJJjWTBpOZuiy83cN9Pq9951pl_pYJx-uJ5rC0ZjwsuSCf5JEnuxYd_78DFCHHTnol0f6CGMUZP0rhRc0ISe_0OXYex9uiRRslBKFOm1U3S1oWwfYuyh-d2AYL32RW990VtfUsfZdu5YdVD_8j9GJOB0AyzjEPo_XaT2gir2DXM1lHM</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Strugarek, A.</creator><creator>Beaudoin, P.</creator><creator>Charbonneau, P.</creator><creator>Brun, A. S.</creator><creator>do Nascimento, J.-D.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9630-6463</orcidid><orcidid>https://orcid.org/0000-0001-7804-2145</orcidid></search><sort><creationdate>20170714</creationdate><title>Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations</title><author>Strugarek, A. ; Beaudoin, P. ; Charbonneau, P. ; Brun, A. S. ; do Nascimento, J.-D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-57600621f9c58abe2f4ede8372f2c49a39b17bedb9b1caf4ed0b3a78507437c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>Convection</topic><topic>Coriolis force</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Luminosity</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamic turbulence</topic><topic>Physics</topic><topic>Simulation</topic><topic>Solar magnetic field</topic><topic>Stars</topic><topic>Stellar activity</topic><topic>Stellar magnetic fields</topic><topic>Stellar rotation</topic><topic>Sun</topic><topic>Sunspot cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strugarek, A.</creatorcontrib><creatorcontrib>Beaudoin, P.</creatorcontrib><creatorcontrib>Charbonneau, P.</creatorcontrib><creatorcontrib>Brun, A. S.</creatorcontrib><creatorcontrib>do Nascimento, J.-D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strugarek, A.</au><au>Beaudoin, P.</au><au>Charbonneau, P.</au><au>Brun, A. S.</au><au>do Nascimento, J.-D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-07-14</date><risdate>2017</risdate><volume>357</volume><issue>6347</issue><spage>185</spage><epage>187</epage><pages>185-187</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The magnetic fields of solar-type stars are observed to cycle over decadal periods—11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun’s cycle and those of other solar-type stars.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28706068</pmid><doi>10.1126/science.aal3999</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-9630-6463</orcidid><orcidid>https://orcid.org/0000-0001-7804-2145</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-07, Vol.357 (6347), p.185-187
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_cea_01588365v1
source Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Astrophysics
Convection
Coriolis force
Fluid dynamics
Fluid flow
Luminosity
Magnetic fields
Magnetohydrodynamic simulation
Magnetohydrodynamic turbulence
Physics
Simulation
Solar magnetic field
Stars
Stellar activity
Stellar magnetic fields
Stellar rotation
Sun
Sunspot cycle
title Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconciling%20solar%20and%20stellar%20magnetic%20cycles%20with%20nonlinear%20dynamo%20simulations&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Strugarek,%20A.&rft.date=2017-07-14&rft.volume=357&rft.issue=6347&rft.spage=185&rft.epage=187&rft.pages=185-187&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aal3999&rft_dat=%3Cjstor_hal_p%3E26399429%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974996420&rft_id=info:pmid/28706068&rft_jstor_id=26399429&rfr_iscdi=true