Guanine glycation repair by DJ-1/Park7 and its bacterial homologs
DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair,...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-07, Vol.357 (6347), p.208-211 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 6347 |
container_start_page | 208 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 357 |
creator | Richarme, Gilbert Liu, Cailing Mihoub, Mouadh Abdallah, Jad Leger, Thibaut Joly, Nicolas Liebart, Jean-Claude Jurkunas, Ula V. Nadal, Marc Bouloc, Philippe Dairou, Julien Lamouri, Aazdine |
description | DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair. |
doi_str_mv | 10.1126/science.aag1095 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01588317v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399436</jstor_id><sourcerecordid>26399436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EoqUwM4EiMTGktePEH2NVoIAqwQCzdXGc1iWNi50g9d-TKqVMN7zPvbp7ELomeExIwiZBW1NrMwZYEiyzEzTcj1gmmJ6iIcaUxQLzbIAuQlhj3GWSnqNBIjLJKJZDNJ23UNvaRMtqp6Gxro682YL1Ub6LHl5jMnkH_8UjqIvINiHKQTfGW6iildu4yi3DJToroQrm6jBH6PPp8WP2HC_e5i-z6SLWqRBNDJwLnCYpSUhWpNxkIktLnSdESkMkg6IsgWpdUClzzhMtRK5prhkuOdGSlXSE7vveFVRq6-0G_E45sOp5ulDagMIkE4IS_kM69q5nt959tyY0au1aX3fnKSJ5KmUqkj016SntXQjelMdagtVerzroVQe93cbtobfNN6Y48n8-O-CmB9ahcf4_Z91bKWX0FyODf0s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974994821</pqid></control><display><type>article</type><title>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Richarme, Gilbert ; Liu, Cailing ; Mihoub, Mouadh ; Abdallah, Jad ; Leger, Thibaut ; Joly, Nicolas ; Liebart, Jean-Claude ; Jurkunas, Ula V. ; Nadal, Marc ; Bouloc, Philippe ; Dairou, Julien ; Lamouri, Aazdine</creator><creatorcontrib>Richarme, Gilbert ; Liu, Cailing ; Mihoub, Mouadh ; Abdallah, Jad ; Leger, Thibaut ; Joly, Nicolas ; Liebart, Jean-Claude ; Jurkunas, Ula V. ; Nadal, Marc ; Bouloc, Philippe ; Dairou, Julien ; Lamouri, Aazdine</creatorcontrib><description>DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aag1095</identifier><identifier>PMID: 28596309</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>8-Hydroxydeoxyguanosine ; Bacteria ; Basal ganglia ; Carbonyl compounds ; Carbonyls ; Central nervous system diseases ; Cytotoxicity ; Damage ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA Repair ; Escherichia coli Proteins - metabolism ; Eukaryotes ; Gene Knockdown Techniques ; Glycosylation ; Guanine ; Guanine - metabolism ; Heat-Shock Proteins - metabolism ; HeLa Cells ; Homology ; Humans ; Life Sciences ; Metabolism ; Molecular Chaperones - metabolism ; Movement disorders ; Nucleic acids ; Nucleotides ; Oxidation ; p53 Protein ; PARK7 protein ; Prokaryotes ; Protein Deglycase DJ-1 - genetics ; Protein Deglycase DJ-1 - metabolism ; Proteins ; Pyruvaldehyde ; Repair ; Ribonucleic acid ; Ribosomal Proteins - metabolism ; RNA ; Sugar ; Toxicity</subject><ispartof>Science (American Association for the Advancement of Science), 2017-07, Vol.357 (6347), p.208-211</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</citedby><cites>FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</cites><orcidid>0000-0001-5267-4953 ; 0000-0002-5059-608X ; 0000-0003-4601-3387 ; 0000-0002-6763-1822 ; 0000-0001-9644-7138 ; 0000-0003-2731-3827 ; 0000-0002-6304-3433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399436$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399436$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28596309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01588317$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richarme, Gilbert</creatorcontrib><creatorcontrib>Liu, Cailing</creatorcontrib><creatorcontrib>Mihoub, Mouadh</creatorcontrib><creatorcontrib>Abdallah, Jad</creatorcontrib><creatorcontrib>Leger, Thibaut</creatorcontrib><creatorcontrib>Joly, Nicolas</creatorcontrib><creatorcontrib>Liebart, Jean-Claude</creatorcontrib><creatorcontrib>Jurkunas, Ula V.</creatorcontrib><creatorcontrib>Nadal, Marc</creatorcontrib><creatorcontrib>Bouloc, Philippe</creatorcontrib><creatorcontrib>Dairou, Julien</creatorcontrib><creatorcontrib>Lamouri, Aazdine</creatorcontrib><title>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.</description><subject>8-Hydroxydeoxyguanosine</subject><subject>Bacteria</subject><subject>Basal ganglia</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Central nervous system diseases</subject><subject>Cytotoxicity</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Gene Knockdown Techniques</subject><subject>Glycosylation</subject><subject>Guanine</subject><subject>Guanine - metabolism</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Homology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Molecular Chaperones - metabolism</subject><subject>Movement disorders</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Oxidation</subject><subject>p53 Protein</subject><subject>PARK7 protein</subject><subject>Prokaryotes</subject><subject>Protein Deglycase DJ-1 - genetics</subject><subject>Protein Deglycase DJ-1 - metabolism</subject><subject>Proteins</subject><subject>Pyruvaldehyde</subject><subject>Repair</subject><subject>Ribonucleic acid</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA</subject><subject>Sugar</subject><subject>Toxicity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkD1PwzAQhi0EoqUwM4EiMTGktePEH2NVoIAqwQCzdXGc1iWNi50g9d-TKqVMN7zPvbp7ELomeExIwiZBW1NrMwZYEiyzEzTcj1gmmJ6iIcaUxQLzbIAuQlhj3GWSnqNBIjLJKJZDNJ23UNvaRMtqp6Gxro682YL1Ub6LHl5jMnkH_8UjqIvINiHKQTfGW6iildu4yi3DJToroQrm6jBH6PPp8WP2HC_e5i-z6SLWqRBNDJwLnCYpSUhWpNxkIktLnSdESkMkg6IsgWpdUClzzhMtRK5prhkuOdGSlXSE7vveFVRq6-0G_E45sOp5ulDagMIkE4IS_kM69q5nt959tyY0au1aX3fnKSJ5KmUqkj016SntXQjelMdagtVerzroVQe93cbtobfNN6Y48n8-O-CmB9ahcf4_Z91bKWX0FyODf0s</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Richarme, Gilbert</creator><creator>Liu, Cailing</creator><creator>Mihoub, Mouadh</creator><creator>Abdallah, Jad</creator><creator>Leger, Thibaut</creator><creator>Joly, Nicolas</creator><creator>Liebart, Jean-Claude</creator><creator>Jurkunas, Ula V.</creator><creator>Nadal, Marc</creator><creator>Bouloc, Philippe</creator><creator>Dairou, Julien</creator><creator>Lamouri, Aazdine</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5267-4953</orcidid><orcidid>https://orcid.org/0000-0002-5059-608X</orcidid><orcidid>https://orcid.org/0000-0003-4601-3387</orcidid><orcidid>https://orcid.org/0000-0002-6763-1822</orcidid><orcidid>https://orcid.org/0000-0001-9644-7138</orcidid><orcidid>https://orcid.org/0000-0003-2731-3827</orcidid><orcidid>https://orcid.org/0000-0002-6304-3433</orcidid></search><sort><creationdate>20170714</creationdate><title>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</title><author>Richarme, Gilbert ; Liu, Cailing ; Mihoub, Mouadh ; Abdallah, Jad ; Leger, Thibaut ; Joly, Nicolas ; Liebart, Jean-Claude ; Jurkunas, Ula V. ; Nadal, Marc ; Bouloc, Philippe ; Dairou, Julien ; Lamouri, Aazdine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>8-Hydroxydeoxyguanosine</topic><topic>Bacteria</topic><topic>Basal ganglia</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Central nervous system diseases</topic><topic>Cytotoxicity</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Gene Knockdown Techniques</topic><topic>Glycosylation</topic><topic>Guanine</topic><topic>Guanine - metabolism</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Homology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Molecular Chaperones - metabolism</topic><topic>Movement disorders</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Oxidation</topic><topic>p53 Protein</topic><topic>PARK7 protein</topic><topic>Prokaryotes</topic><topic>Protein Deglycase DJ-1 - genetics</topic><topic>Protein Deglycase DJ-1 - metabolism</topic><topic>Proteins</topic><topic>Pyruvaldehyde</topic><topic>Repair</topic><topic>Ribonucleic acid</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA</topic><topic>Sugar</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richarme, Gilbert</creatorcontrib><creatorcontrib>Liu, Cailing</creatorcontrib><creatorcontrib>Mihoub, Mouadh</creatorcontrib><creatorcontrib>Abdallah, Jad</creatorcontrib><creatorcontrib>Leger, Thibaut</creatorcontrib><creatorcontrib>Joly, Nicolas</creatorcontrib><creatorcontrib>Liebart, Jean-Claude</creatorcontrib><creatorcontrib>Jurkunas, Ula V.</creatorcontrib><creatorcontrib>Nadal, Marc</creatorcontrib><creatorcontrib>Bouloc, Philippe</creatorcontrib><creatorcontrib>Dairou, Julien</creatorcontrib><creatorcontrib>Lamouri, Aazdine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richarme, Gilbert</au><au>Liu, Cailing</au><au>Mihoub, Mouadh</au><au>Abdallah, Jad</au><au>Leger, Thibaut</au><au>Joly, Nicolas</au><au>Liebart, Jean-Claude</au><au>Jurkunas, Ula V.</au><au>Nadal, Marc</au><au>Bouloc, Philippe</au><au>Dairou, Julien</au><au>Lamouri, Aazdine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-07-14</date><risdate>2017</risdate><volume>357</volume><issue>6347</issue><spage>208</spage><epage>211</epage><pages>208-211</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28596309</pmid><doi>10.1126/science.aag1095</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5267-4953</orcidid><orcidid>https://orcid.org/0000-0002-5059-608X</orcidid><orcidid>https://orcid.org/0000-0003-4601-3387</orcidid><orcidid>https://orcid.org/0000-0002-6763-1822</orcidid><orcidid>https://orcid.org/0000-0001-9644-7138</orcidid><orcidid>https://orcid.org/0000-0003-2731-3827</orcidid><orcidid>https://orcid.org/0000-0002-6304-3433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-07, Vol.357 (6347), p.208-211 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_01588317v1 |
source | Jstor Complete Legacy; MEDLINE; Science Magazine |
subjects | 8-Hydroxydeoxyguanosine Bacteria Basal ganglia Carbonyl compounds Carbonyls Central nervous system diseases Cytotoxicity Damage Deoxyribonucleic acid DNA DNA Damage DNA Repair Escherichia coli Proteins - metabolism Eukaryotes Gene Knockdown Techniques Glycosylation Guanine Guanine - metabolism Heat-Shock Proteins - metabolism HeLa Cells Homology Humans Life Sciences Metabolism Molecular Chaperones - metabolism Movement disorders Nucleic acids Nucleotides Oxidation p53 Protein PARK7 protein Prokaryotes Protein Deglycase DJ-1 - genetics Protein Deglycase DJ-1 - metabolism Proteins Pyruvaldehyde Repair Ribonucleic acid Ribosomal Proteins - metabolism RNA Sugar Toxicity |
title | Guanine glycation repair by DJ-1/Park7 and its bacterial homologs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guanine%20glycation%20repair%20by%20DJ-1/Park7%20and%20its%20bacterial%20homologs&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Richarme,%20Gilbert&rft.date=2017-07-14&rft.volume=357&rft.issue=6347&rft.spage=208&rft.epage=211&rft.pages=208-211&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aag1095&rft_dat=%3Cjstor_hal_p%3E26399436%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974994821&rft_id=info:pmid/28596309&rft_jstor_id=26399436&rfr_iscdi=true |