Guanine glycation repair by DJ-1/Park7 and its bacterial homologs

DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-07, Vol.357 (6347), p.208-211
Hauptverfasser: Richarme, Gilbert, Liu, Cailing, Mihoub, Mouadh, Abdallah, Jad, Leger, Thibaut, Joly, Nicolas, Liebart, Jean-Claude, Jurkunas, Ula V., Nadal, Marc, Bouloc, Philippe, Dairou, Julien, Lamouri, Aazdine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 6347
container_start_page 208
container_title Science (American Association for the Advancement of Science)
container_volume 357
creator Richarme, Gilbert
Liu, Cailing
Mihoub, Mouadh
Abdallah, Jad
Leger, Thibaut
Joly, Nicolas
Liebart, Jean-Claude
Jurkunas, Ula V.
Nadal, Marc
Bouloc, Philippe
Dairou, Julien
Lamouri, Aazdine
description DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.
doi_str_mv 10.1126/science.aag1095
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01588317v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399436</jstor_id><sourcerecordid>26399436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EoqUwM4EiMTGktePEH2NVoIAqwQCzdXGc1iWNi50g9d-TKqVMN7zPvbp7ELomeExIwiZBW1NrMwZYEiyzEzTcj1gmmJ6iIcaUxQLzbIAuQlhj3GWSnqNBIjLJKJZDNJ23UNvaRMtqp6Gxro682YL1Ub6LHl5jMnkH_8UjqIvINiHKQTfGW6iildu4yi3DJToroQrm6jBH6PPp8WP2HC_e5i-z6SLWqRBNDJwLnCYpSUhWpNxkIktLnSdESkMkg6IsgWpdUClzzhMtRK5prhkuOdGSlXSE7vveFVRq6-0G_E45sOp5ulDagMIkE4IS_kM69q5nt959tyY0au1aX3fnKSJ5KmUqkj016SntXQjelMdagtVerzroVQe93cbtobfNN6Y48n8-O-CmB9ahcf4_Z91bKWX0FyODf0s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974994821</pqid></control><display><type>article</type><title>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Richarme, Gilbert ; Liu, Cailing ; Mihoub, Mouadh ; Abdallah, Jad ; Leger, Thibaut ; Joly, Nicolas ; Liebart, Jean-Claude ; Jurkunas, Ula V. ; Nadal, Marc ; Bouloc, Philippe ; Dairou, Julien ; Lamouri, Aazdine</creator><creatorcontrib>Richarme, Gilbert ; Liu, Cailing ; Mihoub, Mouadh ; Abdallah, Jad ; Leger, Thibaut ; Joly, Nicolas ; Liebart, Jean-Claude ; Jurkunas, Ula V. ; Nadal, Marc ; Bouloc, Philippe ; Dairou, Julien ; Lamouri, Aazdine</creatorcontrib><description>DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aag1095</identifier><identifier>PMID: 28596309</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>8-Hydroxydeoxyguanosine ; Bacteria ; Basal ganglia ; Carbonyl compounds ; Carbonyls ; Central nervous system diseases ; Cytotoxicity ; Damage ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA Repair ; Escherichia coli Proteins - metabolism ; Eukaryotes ; Gene Knockdown Techniques ; Glycosylation ; Guanine ; Guanine - metabolism ; Heat-Shock Proteins - metabolism ; HeLa Cells ; Homology ; Humans ; Life Sciences ; Metabolism ; Molecular Chaperones - metabolism ; Movement disorders ; Nucleic acids ; Nucleotides ; Oxidation ; p53 Protein ; PARK7 protein ; Prokaryotes ; Protein Deglycase DJ-1 - genetics ; Protein Deglycase DJ-1 - metabolism ; Proteins ; Pyruvaldehyde ; Repair ; Ribonucleic acid ; Ribosomal Proteins - metabolism ; RNA ; Sugar ; Toxicity</subject><ispartof>Science (American Association for the Advancement of Science), 2017-07, Vol.357 (6347), p.208-211</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</citedby><cites>FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</cites><orcidid>0000-0001-5267-4953 ; 0000-0002-5059-608X ; 0000-0003-4601-3387 ; 0000-0002-6763-1822 ; 0000-0001-9644-7138 ; 0000-0003-2731-3827 ; 0000-0002-6304-3433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26399436$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26399436$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28596309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01588317$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richarme, Gilbert</creatorcontrib><creatorcontrib>Liu, Cailing</creatorcontrib><creatorcontrib>Mihoub, Mouadh</creatorcontrib><creatorcontrib>Abdallah, Jad</creatorcontrib><creatorcontrib>Leger, Thibaut</creatorcontrib><creatorcontrib>Joly, Nicolas</creatorcontrib><creatorcontrib>Liebart, Jean-Claude</creatorcontrib><creatorcontrib>Jurkunas, Ula V.</creatorcontrib><creatorcontrib>Nadal, Marc</creatorcontrib><creatorcontrib>Bouloc, Philippe</creatorcontrib><creatorcontrib>Dairou, Julien</creatorcontrib><creatorcontrib>Lamouri, Aazdine</creatorcontrib><title>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.</description><subject>8-Hydroxydeoxyguanosine</subject><subject>Bacteria</subject><subject>Basal ganglia</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Central nervous system diseases</subject><subject>Cytotoxicity</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Repair</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Eukaryotes</subject><subject>Gene Knockdown Techniques</subject><subject>Glycosylation</subject><subject>Guanine</subject><subject>Guanine - metabolism</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>HeLa Cells</subject><subject>Homology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Molecular Chaperones - metabolism</subject><subject>Movement disorders</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Oxidation</subject><subject>p53 Protein</subject><subject>PARK7 protein</subject><subject>Prokaryotes</subject><subject>Protein Deglycase DJ-1 - genetics</subject><subject>Protein Deglycase DJ-1 - metabolism</subject><subject>Proteins</subject><subject>Pyruvaldehyde</subject><subject>Repair</subject><subject>Ribonucleic acid</subject><subject>Ribosomal Proteins - metabolism</subject><subject>RNA</subject><subject>Sugar</subject><subject>Toxicity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkD1PwzAQhi0EoqUwM4EiMTGktePEH2NVoIAqwQCzdXGc1iWNi50g9d-TKqVMN7zPvbp7ELomeExIwiZBW1NrMwZYEiyzEzTcj1gmmJ6iIcaUxQLzbIAuQlhj3GWSnqNBIjLJKJZDNJ23UNvaRMtqp6Gxro682YL1Ub6LHl5jMnkH_8UjqIvINiHKQTfGW6iildu4yi3DJToroQrm6jBH6PPp8WP2HC_e5i-z6SLWqRBNDJwLnCYpSUhWpNxkIktLnSdESkMkg6IsgWpdUClzzhMtRK5prhkuOdGSlXSE7vveFVRq6-0G_E45sOp5ulDagMIkE4IS_kM69q5nt959tyY0au1aX3fnKSJ5KmUqkj016SntXQjelMdagtVerzroVQe93cbtobfNN6Y48n8-O-CmB9ahcf4_Z91bKWX0FyODf0s</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Richarme, Gilbert</creator><creator>Liu, Cailing</creator><creator>Mihoub, Mouadh</creator><creator>Abdallah, Jad</creator><creator>Leger, Thibaut</creator><creator>Joly, Nicolas</creator><creator>Liebart, Jean-Claude</creator><creator>Jurkunas, Ula V.</creator><creator>Nadal, Marc</creator><creator>Bouloc, Philippe</creator><creator>Dairou, Julien</creator><creator>Lamouri, Aazdine</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5267-4953</orcidid><orcidid>https://orcid.org/0000-0002-5059-608X</orcidid><orcidid>https://orcid.org/0000-0003-4601-3387</orcidid><orcidid>https://orcid.org/0000-0002-6763-1822</orcidid><orcidid>https://orcid.org/0000-0001-9644-7138</orcidid><orcidid>https://orcid.org/0000-0003-2731-3827</orcidid><orcidid>https://orcid.org/0000-0002-6304-3433</orcidid></search><sort><creationdate>20170714</creationdate><title>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</title><author>Richarme, Gilbert ; Liu, Cailing ; Mihoub, Mouadh ; Abdallah, Jad ; Leger, Thibaut ; Joly, Nicolas ; Liebart, Jean-Claude ; Jurkunas, Ula V. ; Nadal, Marc ; Bouloc, Philippe ; Dairou, Julien ; Lamouri, Aazdine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-a77804241215d47e5854fcb2199e196adffa3ccd399b772c88bc3bc60f71c96f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>8-Hydroxydeoxyguanosine</topic><topic>Bacteria</topic><topic>Basal ganglia</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Central nervous system diseases</topic><topic>Cytotoxicity</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Repair</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Eukaryotes</topic><topic>Gene Knockdown Techniques</topic><topic>Glycosylation</topic><topic>Guanine</topic><topic>Guanine - metabolism</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>HeLa Cells</topic><topic>Homology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Molecular Chaperones - metabolism</topic><topic>Movement disorders</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Oxidation</topic><topic>p53 Protein</topic><topic>PARK7 protein</topic><topic>Prokaryotes</topic><topic>Protein Deglycase DJ-1 - genetics</topic><topic>Protein Deglycase DJ-1 - metabolism</topic><topic>Proteins</topic><topic>Pyruvaldehyde</topic><topic>Repair</topic><topic>Ribonucleic acid</topic><topic>Ribosomal Proteins - metabolism</topic><topic>RNA</topic><topic>Sugar</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richarme, Gilbert</creatorcontrib><creatorcontrib>Liu, Cailing</creatorcontrib><creatorcontrib>Mihoub, Mouadh</creatorcontrib><creatorcontrib>Abdallah, Jad</creatorcontrib><creatorcontrib>Leger, Thibaut</creatorcontrib><creatorcontrib>Joly, Nicolas</creatorcontrib><creatorcontrib>Liebart, Jean-Claude</creatorcontrib><creatorcontrib>Jurkunas, Ula V.</creatorcontrib><creatorcontrib>Nadal, Marc</creatorcontrib><creatorcontrib>Bouloc, Philippe</creatorcontrib><creatorcontrib>Dairou, Julien</creatorcontrib><creatorcontrib>Lamouri, Aazdine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richarme, Gilbert</au><au>Liu, Cailing</au><au>Mihoub, Mouadh</au><au>Abdallah, Jad</au><au>Leger, Thibaut</au><au>Joly, Nicolas</au><au>Liebart, Jean-Claude</au><au>Jurkunas, Ula V.</au><au>Nadal, Marc</au><au>Bouloc, Philippe</au><au>Dairou, Julien</au><au>Lamouri, Aazdine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guanine glycation repair by DJ-1/Park7 and its bacterial homologs</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-07-14</date><risdate>2017</risdate><volume>357</volume><issue>6347</issue><spage>208</spage><epage>211</epage><pages>208-211</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>DNA damage induced by reactive carbonyls (mainly methylglyoxal and glyoxal), called DNA glycation, is quantitatively as important as oxidative damage. DNA glycation is associated with increased mutation frequency, DNA strand breaks, and cytotoxicity. However, in contrast to guanine oxidation repair, how glycated DNA is repaired remains undetermined. Here, we found that the parkinsonism-associated protein DJ-1 and its bacterial homologs Hsp31, YhbO, and YajL could repair methylglyoxal- and glyoxal-glycated nucleotides and nucleic acids. DJ-1–depleted cells displayed increased levels of glycated DNA, DNA strand breaks, and phosphorylated p53. Deglycase-deficient bacterial mutants displayed increased levels of glycated DNA and RNA and exhibited strong mutator phenotypes. Thus, DJ-1 and its prokaryotic homologs constitute a major nucleotide repair system that we name guanine glycation repair.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28596309</pmid><doi>10.1126/science.aag1095</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5267-4953</orcidid><orcidid>https://orcid.org/0000-0002-5059-608X</orcidid><orcidid>https://orcid.org/0000-0003-4601-3387</orcidid><orcidid>https://orcid.org/0000-0002-6763-1822</orcidid><orcidid>https://orcid.org/0000-0001-9644-7138</orcidid><orcidid>https://orcid.org/0000-0003-2731-3827</orcidid><orcidid>https://orcid.org/0000-0002-6304-3433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-07, Vol.357 (6347), p.208-211
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_cea_01588317v1
source Jstor Complete Legacy; MEDLINE; Science Magazine
subjects 8-Hydroxydeoxyguanosine
Bacteria
Basal ganglia
Carbonyl compounds
Carbonyls
Central nervous system diseases
Cytotoxicity
Damage
Deoxyribonucleic acid
DNA
DNA Damage
DNA Repair
Escherichia coli Proteins - metabolism
Eukaryotes
Gene Knockdown Techniques
Glycosylation
Guanine
Guanine - metabolism
Heat-Shock Proteins - metabolism
HeLa Cells
Homology
Humans
Life Sciences
Metabolism
Molecular Chaperones - metabolism
Movement disorders
Nucleic acids
Nucleotides
Oxidation
p53 Protein
PARK7 protein
Prokaryotes
Protein Deglycase DJ-1 - genetics
Protein Deglycase DJ-1 - metabolism
Proteins
Pyruvaldehyde
Repair
Ribonucleic acid
Ribosomal Proteins - metabolism
RNA
Sugar
Toxicity
title Guanine glycation repair by DJ-1/Park7 and its bacterial homologs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guanine%20glycation%20repair%20by%20DJ-1/Park7%20and%20its%20bacterial%20homologs&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Richarme,%20Gilbert&rft.date=2017-07-14&rft.volume=357&rft.issue=6347&rft.spage=208&rft.epage=211&rft.pages=208-211&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aag1095&rft_dat=%3Cjstor_hal_p%3E26399436%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974994821&rft_id=info:pmid/28596309&rft_jstor_id=26399436&rfr_iscdi=true