Polarization‐Sensitive Single‐Wall Carbon Nanotubes All‐in‐One Photodetecting and Emitting Device Working at 1.55 µm
Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Indeed, the pursuit for faster, cheaper, and smaller transceivers for datacom applications is fueling the interest in alternative materials to develop the next generation of photonic devices...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-10, Vol.27 (38), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Balestrieri, Matteo Keita, Al‐Saleh Duran‐Valdeiglesias, Elena Alonso‐Ramos, Carlos Zhang, Weiwei Le Roux, Xavier Cassan, Eric Vivien, Laurent Bezugly, Viktor Fediai, Artem Derycke, Vincent Filoramo, Arianna |
description | Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Indeed, the pursuit for faster, cheaper, and smaller transceivers for datacom applications is fueling the interest in alternative materials to develop the next generation of photonic devices. In this context, single wall carbon nanotubes (SWNTs) have demonstrated outstanding electrical and optical properties that make them an ideal material for the realization of ultracompact optoelectronic devices. Still, the mixture in chirality of as‐synthesized SWNTs and the necessity of precise positioning of SWNT‐based devices hinder the development of practical devices. Here, the realization of operational devices obtained using liquid solution‐based techniques is reported, which allow high‐purity sorting and localized deposition of aligned semiconducting SWNTs (s‐SWNTs). More specifically, devices are demonstrated by combining a polymer assisted extraction method, which enables a very effective selection of s‐SWNTs with a diameter of about 1–1.2 nm, with dielectrophoresis, which localizes the deposition onto silicon wafers in aligned arrays in‐between prepatterned electrodes. Thus, long semiconducting nanotubes directly contact the electrodes and, when asymmetric contacts (i.e., source and drain made of different metals) are used, each device can operate both as photoemitter and as photodetector in the telecom band around 1.55 µm in air at room temperature.
Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Here, such devices are demonstrated by combining an effective selection of semiconducting single wall carbon nanotube with their deposition in arrays using dielectrophoresis. Specifically the obtained device performs, both as photoemitter and as photodetector, around 1.55 µm in air at room temperature. |
doi_str_mv | 10.1002/adfm.201702341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01573219v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949064848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2661-48b4f90a766449ff41d00dda3fe10a1d7d92ab5534e678cba37619174b1033d33</originalsourceid><addsrcrecordid>eNqFkUtOwzAQhiMEEs8ta0usWLR4YsdJllV5SoVWAgQ7axI7YHBjcNwikJA4ApfhAhyFk5BSVJasxuP5vtFIfxRtA-0CpfEeqmrcjSmkNGYclqI1ECA6jMbZ8uIN16vRetPc0RZLGV-LXkfOojcvGIyrv97ez3XdmGCmmpyb-sbq9usKrSV99IWryRnWLkwK3ZCete3MzJxhrcno1gWndNBlaD2CtSIHYxN-mn09NaUmV87f_8wCgW6SkM-P8Wa0UqFt9NZv3YguDw8u-sedwfDopN8bdMpYCOjwrOBVTjEVgvO8qjgoSpVCVmmgCCpVeYxFkjCuRZqVBbJUQA4pL4AyphjbiHbne2_RygdvxuifpUMjj3sDWWqUFJKUxZBPoWV35uyDd48T3QR55ya-bs-TkPOcCp7xrKW6c6r0rmm8rhZrgcpZHHIWh1zE0Qr5XHgyVj__Q8ve_uHpn_sNipeSCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1949064848</pqid></control><display><type>article</type><title>Polarization‐Sensitive Single‐Wall Carbon Nanotubes All‐in‐One Photodetecting and Emitting Device Working at 1.55 µm</title><source>Wiley Online Library (Online service)</source><creator>Balestrieri, Matteo ; Keita, Al‐Saleh ; Duran‐Valdeiglesias, Elena ; Alonso‐Ramos, Carlos ; Zhang, Weiwei ; Le Roux, Xavier ; Cassan, Eric ; Vivien, Laurent ; Bezugly, Viktor ; Fediai, Artem ; Derycke, Vincent ; Filoramo, Arianna</creator><creatorcontrib>Balestrieri, Matteo ; Keita, Al‐Saleh ; Duran‐Valdeiglesias, Elena ; Alonso‐Ramos, Carlos ; Zhang, Weiwei ; Le Roux, Xavier ; Cassan, Eric ; Vivien, Laurent ; Bezugly, Viktor ; Fediai, Artem ; Derycke, Vincent ; Filoramo, Arianna</creatorcontrib><description>Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Indeed, the pursuit for faster, cheaper, and smaller transceivers for datacom applications is fueling the interest in alternative materials to develop the next generation of photonic devices. In this context, single wall carbon nanotubes (SWNTs) have demonstrated outstanding electrical and optical properties that make them an ideal material for the realization of ultracompact optoelectronic devices. Still, the mixture in chirality of as‐synthesized SWNTs and the necessity of precise positioning of SWNT‐based devices hinder the development of practical devices. Here, the realization of operational devices obtained using liquid solution‐based techniques is reported, which allow high‐purity sorting and localized deposition of aligned semiconducting SWNTs (s‐SWNTs). More specifically, devices are demonstrated by combining a polymer assisted extraction method, which enables a very effective selection of s‐SWNTs with a diameter of about 1–1.2 nm, with dielectrophoresis, which localizes the deposition onto silicon wafers in aligned arrays in‐between prepatterned electrodes. Thus, long semiconducting nanotubes directly contact the electrodes and, when asymmetric contacts (i.e., source and drain made of different metals) are used, each device can operate both as photoemitter and as photodetector in the telecom band around 1.55 µm in air at room temperature.
Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Here, such devices are demonstrated by combining an effective selection of semiconducting single wall carbon nanotube with their deposition in arrays using dielectrophoresis. Specifically the obtained device performs, both as photoemitter and as photodetector, around 1.55 µm in air at room temperature.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201702341</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>carbon nanotubes ; Chemical Sciences ; Chirality ; Deposition ; Devices ; Dielectrophoresis ; Electric contacts ; Electrodes ; electroluminescence ; Material chemistry ; Materials science ; Nanotechnology devices ; Nanotubes ; Optical properties ; Optoelectronic devices ; optoelectronics ; photodetectors ; Photonics ; Single wall carbon nanotubes ; Telecommunications ; Transceivers</subject><ispartof>Advanced functional materials, 2017-10, Vol.27 (38), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2661-48b4f90a766449ff41d00dda3fe10a1d7d92ab5534e678cba37619174b1033d33</citedby><cites>FETCH-LOGICAL-c2661-48b4f90a766449ff41d00dda3fe10a1d7d92ab5534e678cba37619174b1033d33</cites><orcidid>0000-0003-2802-7689 ; 0000-0001-5740-0433 ; 0000-0002-2980-7225 ; 0000-0002-3272-9694 ; 0000-0003-4616-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201702341$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201702341$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01573219$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Balestrieri, Matteo</creatorcontrib><creatorcontrib>Keita, Al‐Saleh</creatorcontrib><creatorcontrib>Duran‐Valdeiglesias, Elena</creatorcontrib><creatorcontrib>Alonso‐Ramos, Carlos</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Le Roux, Xavier</creatorcontrib><creatorcontrib>Cassan, Eric</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Bezugly, Viktor</creatorcontrib><creatorcontrib>Fediai, Artem</creatorcontrib><creatorcontrib>Derycke, Vincent</creatorcontrib><creatorcontrib>Filoramo, Arianna</creatorcontrib><title>Polarization‐Sensitive Single‐Wall Carbon Nanotubes All‐in‐One Photodetecting and Emitting Device Working at 1.55 µm</title><title>Advanced functional materials</title><description>Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Indeed, the pursuit for faster, cheaper, and smaller transceivers for datacom applications is fueling the interest in alternative materials to develop the next generation of photonic devices. In this context, single wall carbon nanotubes (SWNTs) have demonstrated outstanding electrical and optical properties that make them an ideal material for the realization of ultracompact optoelectronic devices. Still, the mixture in chirality of as‐synthesized SWNTs and the necessity of precise positioning of SWNT‐based devices hinder the development of practical devices. Here, the realization of operational devices obtained using liquid solution‐based techniques is reported, which allow high‐purity sorting and localized deposition of aligned semiconducting SWNTs (s‐SWNTs). More specifically, devices are demonstrated by combining a polymer assisted extraction method, which enables a very effective selection of s‐SWNTs with a diameter of about 1–1.2 nm, with dielectrophoresis, which localizes the deposition onto silicon wafers in aligned arrays in‐between prepatterned electrodes. Thus, long semiconducting nanotubes directly contact the electrodes and, when asymmetric contacts (i.e., source and drain made of different metals) are used, each device can operate both as photoemitter and as photodetector in the telecom band around 1.55 µm in air at room temperature.
Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Here, such devices are demonstrated by combining an effective selection of semiconducting single wall carbon nanotube with their deposition in arrays using dielectrophoresis. Specifically the obtained device performs, both as photoemitter and as photodetector, around 1.55 µm in air at room temperature.</description><subject>carbon nanotubes</subject><subject>Chemical Sciences</subject><subject>Chirality</subject><subject>Deposition</subject><subject>Devices</subject><subject>Dielectrophoresis</subject><subject>Electric contacts</subject><subject>Electrodes</subject><subject>electroluminescence</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Nanotechnology devices</subject><subject>Nanotubes</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>optoelectronics</subject><subject>photodetectors</subject><subject>Photonics</subject><subject>Single wall carbon nanotubes</subject><subject>Telecommunications</subject><subject>Transceivers</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtOwzAQhiMEEs8ta0usWLR4YsdJllV5SoVWAgQ7axI7YHBjcNwikJA4ApfhAhyFk5BSVJasxuP5vtFIfxRtA-0CpfEeqmrcjSmkNGYclqI1ECA6jMbZ8uIN16vRetPc0RZLGV-LXkfOojcvGIyrv97ez3XdmGCmmpyb-sbq9usKrSV99IWryRnWLkwK3ZCete3MzJxhrcno1gWndNBlaD2CtSIHYxN-mn09NaUmV87f_8wCgW6SkM-P8Wa0UqFt9NZv3YguDw8u-sedwfDopN8bdMpYCOjwrOBVTjEVgvO8qjgoSpVCVmmgCCpVeYxFkjCuRZqVBbJUQA4pL4AyphjbiHbne2_RygdvxuifpUMjj3sDWWqUFJKUxZBPoWV35uyDd48T3QR55ya-bs-TkPOcCp7xrKW6c6r0rmm8rhZrgcpZHHIWh1zE0Qr5XHgyVj__Q8ve_uHpn_sNipeSCw</recordid><startdate>20171012</startdate><enddate>20171012</enddate><creator>Balestrieri, Matteo</creator><creator>Keita, Al‐Saleh</creator><creator>Duran‐Valdeiglesias, Elena</creator><creator>Alonso‐Ramos, Carlos</creator><creator>Zhang, Weiwei</creator><creator>Le Roux, Xavier</creator><creator>Cassan, Eric</creator><creator>Vivien, Laurent</creator><creator>Bezugly, Viktor</creator><creator>Fediai, Artem</creator><creator>Derycke, Vincent</creator><creator>Filoramo, Arianna</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0001-5740-0433</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid><orcidid>https://orcid.org/0000-0002-3272-9694</orcidid><orcidid>https://orcid.org/0000-0003-4616-7714</orcidid></search><sort><creationdate>20171012</creationdate><title>Polarization‐Sensitive Single‐Wall Carbon Nanotubes All‐in‐One Photodetecting and Emitting Device Working at 1.55 µm</title><author>Balestrieri, Matteo ; Keita, Al‐Saleh ; Duran‐Valdeiglesias, Elena ; Alonso‐Ramos, Carlos ; Zhang, Weiwei ; Le Roux, Xavier ; Cassan, Eric ; Vivien, Laurent ; Bezugly, Viktor ; Fediai, Artem ; Derycke, Vincent ; Filoramo, Arianna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2661-48b4f90a766449ff41d00dda3fe10a1d7d92ab5534e678cba37619174b1033d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>carbon nanotubes</topic><topic>Chemical Sciences</topic><topic>Chirality</topic><topic>Deposition</topic><topic>Devices</topic><topic>Dielectrophoresis</topic><topic>Electric contacts</topic><topic>Electrodes</topic><topic>electroluminescence</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Nanotechnology devices</topic><topic>Nanotubes</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>optoelectronics</topic><topic>photodetectors</topic><topic>Photonics</topic><topic>Single wall carbon nanotubes</topic><topic>Telecommunications</topic><topic>Transceivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balestrieri, Matteo</creatorcontrib><creatorcontrib>Keita, Al‐Saleh</creatorcontrib><creatorcontrib>Duran‐Valdeiglesias, Elena</creatorcontrib><creatorcontrib>Alonso‐Ramos, Carlos</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><creatorcontrib>Le Roux, Xavier</creatorcontrib><creatorcontrib>Cassan, Eric</creatorcontrib><creatorcontrib>Vivien, Laurent</creatorcontrib><creatorcontrib>Bezugly, Viktor</creatorcontrib><creatorcontrib>Fediai, Artem</creatorcontrib><creatorcontrib>Derycke, Vincent</creatorcontrib><creatorcontrib>Filoramo, Arianna</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balestrieri, Matteo</au><au>Keita, Al‐Saleh</au><au>Duran‐Valdeiglesias, Elena</au><au>Alonso‐Ramos, Carlos</au><au>Zhang, Weiwei</au><au>Le Roux, Xavier</au><au>Cassan, Eric</au><au>Vivien, Laurent</au><au>Bezugly, Viktor</au><au>Fediai, Artem</au><au>Derycke, Vincent</au><au>Filoramo, Arianna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization‐Sensitive Single‐Wall Carbon Nanotubes All‐in‐One Photodetecting and Emitting Device Working at 1.55 µm</atitle><jtitle>Advanced functional materials</jtitle><date>2017-10-12</date><risdate>2017</risdate><volume>27</volume><issue>38</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Indeed, the pursuit for faster, cheaper, and smaller transceivers for datacom applications is fueling the interest in alternative materials to develop the next generation of photonic devices. In this context, single wall carbon nanotubes (SWNTs) have demonstrated outstanding electrical and optical properties that make them an ideal material for the realization of ultracompact optoelectronic devices. Still, the mixture in chirality of as‐synthesized SWNTs and the necessity of precise positioning of SWNT‐based devices hinder the development of practical devices. Here, the realization of operational devices obtained using liquid solution‐based techniques is reported, which allow high‐purity sorting and localized deposition of aligned semiconducting SWNTs (s‐SWNTs). More specifically, devices are demonstrated by combining a polymer assisted extraction method, which enables a very effective selection of s‐SWNTs with a diameter of about 1–1.2 nm, with dielectrophoresis, which localizes the deposition onto silicon wafers in aligned arrays in‐between prepatterned electrodes. Thus, long semiconducting nanotubes directly contact the electrodes and, when asymmetric contacts (i.e., source and drain made of different metals) are used, each device can operate both as photoemitter and as photodetector in the telecom band around 1.55 µm in air at room temperature.
Functional and easy‐to‐integrate nanodevices operating in the telecom wavelength ranges are highly desirable. Here, such devices are demonstrated by combining an effective selection of semiconducting single wall carbon nanotube with their deposition in arrays using dielectrophoresis. Specifically the obtained device performs, both as photoemitter and as photodetector, around 1.55 µm in air at room temperature.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201702341</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2802-7689</orcidid><orcidid>https://orcid.org/0000-0001-5740-0433</orcidid><orcidid>https://orcid.org/0000-0002-2980-7225</orcidid><orcidid>https://orcid.org/0000-0002-3272-9694</orcidid><orcidid>https://orcid.org/0000-0003-4616-7714</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-10, Vol.27 (38), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_01573219v1 |
source | Wiley Online Library (Online service) |
subjects | carbon nanotubes Chemical Sciences Chirality Deposition Devices Dielectrophoresis Electric contacts Electrodes electroluminescence Material chemistry Materials science Nanotechnology devices Nanotubes Optical properties Optoelectronic devices optoelectronics photodetectors Photonics Single wall carbon nanotubes Telecommunications Transceivers |
title | Polarization‐Sensitive Single‐Wall Carbon Nanotubes All‐in‐One Photodetecting and Emitting Device Working at 1.55 µm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%E2%80%90Sensitive%20Single%E2%80%90Wall%20Carbon%20Nanotubes%20All%E2%80%90in%E2%80%90One%20Photodetecting%20and%20Emitting%20Device%20Working%20at%201.55%20%C2%B5m&rft.jtitle=Advanced%20functional%20materials&rft.au=Balestrieri,%20Matteo&rft.date=2017-10-12&rft.volume=27&rft.issue=38&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201702341&rft_dat=%3Cproquest_hal_p%3E1949064848%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1949064848&rft_id=info:pmid/&rfr_iscdi=true |