Light-like scattering in quantum gravity
A bstract We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1 2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-11, Vol.2016 (11), p.1-26, Article 117 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2016 |
creator | Bjerrum-Bohr, N. E. J. Donoghue, John F. Holstein, Barry R. Planté, Ludovic Vanhove, Pierre |
description | A
bstract
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-
1
2
, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method. |
doi_str_mv | 10.1007/JHEP11(2016)117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01459285v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864581352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKdnrwUv26HuvaRpk-MY0ykDPeg5xJhumV27Je1g_70tFRmCp_cO3-_Hex8htwj3CJBNnhfzV8QRBUzHiNkZGSBQGYskk-cn-yW5CmEDgBwlDMho6VbrOi7cl42C0XVtvStXkSujfaPLutlGK68Prj5ek4tcF8He_MwheX-Yv80W8fLl8Wk2XcYmQVHHyFgqgWW5BI4WskRIyCxPRUYTynMwnCHP7UcCltmc5ojpp6DMpACSUTRsSMZ971oXaufdVvujqrRTi-lSGasVYMIlFfyALTvq2Z2v9o0Ntdq6YGxR6NJWTVAo0oQLZJy26N0fdFM1vmw_aamEAUMhOmrSU8ZXIXib_16AoDrLqresOsuqtdwmoE-EXSfO-pPefyLflst51Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1843031882</pqid></control><display><type>article</type><title>Light-like scattering in quantum gravity</title><source>SpringerOpen</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Bjerrum-Bohr, N. E. J. ; Donoghue, John F. ; Holstein, Barry R. ; Planté, Ludovic ; Vanhove, Pierre</creator><creatorcontrib>Bjerrum-Bohr, N. E. J. ; Donoghue, John F. ; Holstein, Barry R. ; Planté, Ludovic ; Vanhove, Pierre</creatorcontrib><description>A
bstract
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-
1
2
, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.</description><identifier>ISSN: 1029-8479</identifier><identifier>ISSN: 1126-6708</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP11(2016)117</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Black holes (astronomy) ; Classical and Quantum Gravitation ; Computation ; Elementary Particles ; Fermions ; Field theory ; General Relativity and Quantum Cosmology ; High energy physics ; High Energy Physics - Theory ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum gravity ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity ; Relativity Theory ; Scattering ; Statistics ; String Theory</subject><ispartof>The journal of high energy physics, 2016-11, Vol.2016 (11), p.1-26, Article 117</ispartof><rights>The Author(s) 2016</rights><rights>Journal of High Energy Physics is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</citedby><cites>FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</cites><orcidid>0000-0001-5115-4788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP11(2016)117$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP11(2016)117$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27903,27904,41099,42168,51554</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01459285$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bjerrum-Bohr, N. E. J.</creatorcontrib><creatorcontrib>Donoghue, John F.</creatorcontrib><creatorcontrib>Holstein, Barry R.</creatorcontrib><creatorcontrib>Planté, Ludovic</creatorcontrib><creatorcontrib>Vanhove, Pierre</creatorcontrib><title>Light-like scattering in quantum gravity</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-
1
2
, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.</description><subject>Black holes (astronomy)</subject><subject>Classical and Quantum Gravitation</subject><subject>Computation</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>Field theory</subject><subject>General Relativity and Quantum Cosmology</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum gravity</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity</subject><subject>Relativity Theory</subject><subject>Scattering</subject><subject>Statistics</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1126-6708</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFLwzAUh4MoOKdnrwUv26HuvaRpk-MY0ykDPeg5xJhumV27Je1g_70tFRmCp_cO3-_Hex8htwj3CJBNnhfzV8QRBUzHiNkZGSBQGYskk-cn-yW5CmEDgBwlDMho6VbrOi7cl42C0XVtvStXkSujfaPLutlGK68Prj5ek4tcF8He_MwheX-Yv80W8fLl8Wk2XcYmQVHHyFgqgWW5BI4WskRIyCxPRUYTynMwnCHP7UcCltmc5ojpp6DMpACSUTRsSMZ971oXaufdVvujqrRTi-lSGasVYMIlFfyALTvq2Z2v9o0Ntdq6YGxR6NJWTVAo0oQLZJy26N0fdFM1vmw_aamEAUMhOmrSU8ZXIXib_16AoDrLqresOsuqtdwmoE-EXSfO-pPefyLflst51Q</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Bjerrum-Bohr, N. E. J.</creator><creator>Donoghue, John F.</creator><creator>Holstein, Barry R.</creator><creator>Planté, Ludovic</creator><creator>Vanhove, Pierre</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5115-4788</orcidid></search><sort><creationdate>20161101</creationdate><title>Light-like scattering in quantum gravity</title><author>Bjerrum-Bohr, N. E. J. ; Donoghue, John F. ; Holstein, Barry R. ; Planté, Ludovic ; Vanhove, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Black holes (astronomy)</topic><topic>Classical and Quantum Gravitation</topic><topic>Computation</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>Field theory</topic><topic>General Relativity and Quantum Cosmology</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum gravity</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity</topic><topic>Relativity Theory</topic><topic>Scattering</topic><topic>Statistics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjerrum-Bohr, N. E. J.</creatorcontrib><creatorcontrib>Donoghue, John F.</creatorcontrib><creatorcontrib>Holstein, Barry R.</creatorcontrib><creatorcontrib>Planté, Ludovic</creatorcontrib><creatorcontrib>Vanhove, Pierre</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bjerrum-Bohr, N. E. J.</au><au>Donoghue, John F.</au><au>Holstein, Barry R.</au><au>Planté, Ludovic</au><au>Vanhove, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-like scattering in quantum gravity</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>2016</volume><issue>11</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>117</artnum><issn>1029-8479</issn><issn>1126-6708</issn><eissn>1029-8479</eissn><abstract>A
bstract
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-
1
2
, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP11(2016)117</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5115-4788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2016-11, Vol.2016 (11), p.1-26, Article 117 |
issn | 1029-8479 1126-6708 1029-8479 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_01459285v1 |
source | SpringerOpen; Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Black holes (astronomy) Classical and Quantum Gravitation Computation Elementary Particles Fermions Field theory General Relativity and Quantum Cosmology High energy physics High Energy Physics - Theory Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum gravity Quantum Physics Regular Article - Theoretical Physics Relativity Relativity Theory Scattering Statistics String Theory |
title | Light-like scattering in quantum gravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-like%20scattering%20in%20quantum%20gravity&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Bjerrum-Bohr,%20N.%20E.%20J.&rft.date=2016-11-01&rft.volume=2016&rft.issue=11&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=117&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP11(2016)117&rft_dat=%3Cproquest_hal_p%3E1864581352%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1843031882&rft_id=info:pmid/&rfr_iscdi=true |