Light-like scattering in quantum gravity

A bstract We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1 2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-11, Vol.2016 (11), p.1-26, Article 117
Hauptverfasser: Bjerrum-Bohr, N. E. J., Donoghue, John F., Holstein, Barry R., Planté, Ludovic, Vanhove, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 11
container_start_page 1
container_title The journal of high energy physics
container_volume 2016
creator Bjerrum-Bohr, N. E. J.
Donoghue, John F.
Holstein, Barry R.
Planté, Ludovic
Vanhove, Pierre
description A bstract We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1 2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.
doi_str_mv 10.1007/JHEP11(2016)117
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01459285v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864581352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKdnrwUv26HuvaRpk-MY0ykDPeg5xJhumV27Je1g_70tFRmCp_cO3-_Hex8htwj3CJBNnhfzV8QRBUzHiNkZGSBQGYskk-cn-yW5CmEDgBwlDMho6VbrOi7cl42C0XVtvStXkSujfaPLutlGK68Prj5ek4tcF8He_MwheX-Yv80W8fLl8Wk2XcYmQVHHyFgqgWW5BI4WskRIyCxPRUYTynMwnCHP7UcCltmc5ojpp6DMpACSUTRsSMZ971oXaufdVvujqrRTi-lSGasVYMIlFfyALTvq2Z2v9o0Ntdq6YGxR6NJWTVAo0oQLZJy26N0fdFM1vmw_aamEAUMhOmrSU8ZXIXib_16AoDrLqresOsuqtdwmoE-EXSfO-pPefyLflst51Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1843031882</pqid></control><display><type>article</type><title>Light-like scattering in quantum gravity</title><source>SpringerOpen</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Bjerrum-Bohr, N. E. J. ; Donoghue, John F. ; Holstein, Barry R. ; Planté, Ludovic ; Vanhove, Pierre</creator><creatorcontrib>Bjerrum-Bohr, N. E. J. ; Donoghue, John F. ; Holstein, Barry R. ; Planté, Ludovic ; Vanhove, Pierre</creatorcontrib><description>A bstract We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1 2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.</description><identifier>ISSN: 1029-8479</identifier><identifier>ISSN: 1126-6708</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP11(2016)117</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Black holes (astronomy) ; Classical and Quantum Gravitation ; Computation ; Elementary Particles ; Fermions ; Field theory ; General Relativity and Quantum Cosmology ; High energy physics ; High Energy Physics - Theory ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum gravity ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity ; Relativity Theory ; Scattering ; Statistics ; String Theory</subject><ispartof>The journal of high energy physics, 2016-11, Vol.2016 (11), p.1-26, Article 117</ispartof><rights>The Author(s) 2016</rights><rights>Journal of High Energy Physics is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</citedby><cites>FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</cites><orcidid>0000-0001-5115-4788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP11(2016)117$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP11(2016)117$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27903,27904,41099,42168,51554</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01459285$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bjerrum-Bohr, N. E. J.</creatorcontrib><creatorcontrib>Donoghue, John F.</creatorcontrib><creatorcontrib>Holstein, Barry R.</creatorcontrib><creatorcontrib>Planté, Ludovic</creatorcontrib><creatorcontrib>Vanhove, Pierre</creatorcontrib><title>Light-like scattering in quantum gravity</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1 2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.</description><subject>Black holes (astronomy)</subject><subject>Classical and Quantum Gravitation</subject><subject>Computation</subject><subject>Elementary Particles</subject><subject>Fermions</subject><subject>Field theory</subject><subject>General Relativity and Quantum Cosmology</subject><subject>High energy physics</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum gravity</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity</subject><subject>Relativity Theory</subject><subject>Scattering</subject><subject>Statistics</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1126-6708</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kMFLwzAUh4MoOKdnrwUv26HuvaRpk-MY0ykDPeg5xJhumV27Je1g_70tFRmCp_cO3-_Hex8htwj3CJBNnhfzV8QRBUzHiNkZGSBQGYskk-cn-yW5CmEDgBwlDMho6VbrOi7cl42C0XVtvStXkSujfaPLutlGK68Prj5ek4tcF8He_MwheX-Yv80W8fLl8Wk2XcYmQVHHyFgqgWW5BI4WskRIyCxPRUYTynMwnCHP7UcCltmc5ojpp6DMpACSUTRsSMZ971oXaufdVvujqrRTi-lSGasVYMIlFfyALTvq2Z2v9o0Ntdq6YGxR6NJWTVAo0oQLZJy26N0fdFM1vmw_aamEAUMhOmrSU8ZXIXib_16AoDrLqresOsuqtdwmoE-EXSfO-pPefyLflst51Q</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Bjerrum-Bohr, N. E. J.</creator><creator>Donoghue, John F.</creator><creator>Holstein, Barry R.</creator><creator>Planté, Ludovic</creator><creator>Vanhove, Pierre</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5115-4788</orcidid></search><sort><creationdate>20161101</creationdate><title>Light-like scattering in quantum gravity</title><author>Bjerrum-Bohr, N. E. J. ; Donoghue, John F. ; Holstein, Barry R. ; Planté, Ludovic ; Vanhove, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-13369037f9051e0748907e56872425f0c5315feb40e3ef2f116d823c6009321c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Black holes (astronomy)</topic><topic>Classical and Quantum Gravitation</topic><topic>Computation</topic><topic>Elementary Particles</topic><topic>Fermions</topic><topic>Field theory</topic><topic>General Relativity and Quantum Cosmology</topic><topic>High energy physics</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum gravity</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity</topic><topic>Relativity Theory</topic><topic>Scattering</topic><topic>Statistics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bjerrum-Bohr, N. E. J.</creatorcontrib><creatorcontrib>Donoghue, John F.</creatorcontrib><creatorcontrib>Holstein, Barry R.</creatorcontrib><creatorcontrib>Planté, Ludovic</creatorcontrib><creatorcontrib>Vanhove, Pierre</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bjerrum-Bohr, N. E. J.</au><au>Donoghue, John F.</au><au>Holstein, Barry R.</au><au>Planté, Ludovic</au><au>Vanhove, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-like scattering in quantum gravity</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>2016</volume><issue>11</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>117</artnum><issn>1029-8479</issn><issn>1126-6708</issn><eissn>1029-8479</eissn><abstract>A bstract We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1 2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP11(2016)117</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5115-4788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2016-11, Vol.2016 (11), p.1-26, Article 117
issn 1029-8479
1126-6708
1029-8479
language eng
recordid cdi_hal_primary_oai_HAL_cea_01459285v1
source SpringerOpen; Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Black holes (astronomy)
Classical and Quantum Gravitation
Computation
Elementary Particles
Fermions
Field theory
General Relativity and Quantum Cosmology
High energy physics
High Energy Physics - Theory
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum gravity
Quantum Physics
Regular Article - Theoretical Physics
Relativity
Relativity Theory
Scattering
Statistics
String Theory
title Light-like scattering in quantum gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-like%20scattering%20in%20quantum%20gravity&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Bjerrum-Bohr,%20N.%20E.%20J.&rft.date=2016-11-01&rft.volume=2016&rft.issue=11&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=117&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP11(2016)117&rft_dat=%3Cproquest_hal_p%3E1864581352%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1843031882&rft_id=info:pmid/&rfr_iscdi=true