The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day

We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS–North, GOODS–South, UDS, and COSMOS obtained within the GOODS–Herschel and CANDELS–Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2015-03, Vol.575, p.A74
Hauptverfasser: Schreiber, C., Pannella, M., Elbaz, D., Béthermin, M., Inami, H., Dickinson, M., Magnelli, B., Wang, T., Aussel, H., Daddi, E., Juneau, S., Shu, X., Sargent, M. T., Buat, V., Faber, S. M., Ferguson, H. C., Giavalisco, M., Koekemoer, A. M., Magdis, G., Morrison, G. E., Papovich, C., Santini, P., Scott, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A74
container_title Astronomy and astrophysics (Berlin)
container_volume 575
creator Schreiber, C.
Pannella, M.
Elbaz, D.
Béthermin, M.
Inami, H.
Dickinson, M.
Magnelli, B.
Wang, T.
Aussel, H.
Daddi, E.
Juneau, S.
Shu, X.
Sargent, M. T.
Buat, V.
Faber, S. M.
Ferguson, H. C.
Giavalisco, M.
Koekemoer, A. M.
Magdis, G.
Morrison, G. E.
Papovich, C.
Santini, P.
Scott, D.
description We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS–North, GOODS–South, UDS, and COSMOS obtained within the GOODS–Herschel and CANDELS–Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supplemented by the stacking analysis of a mass complete sample of 62 361 star-forming galaxies from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey and from two deep ground-based Ks band-selected catalogs in the GOODS–North and the COSMOS-wide field to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called “scatter stacking”, which may be easily generalized to other experiments. The combination of direct UV and far-infrared UV-reprocessed light provides a complete census on the star formation rates (SFRs), allowing us to demonstrate that galaxies at z = 4 to 0 of all stellar masses (M∗) follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the log 10(SFR)–log 10(M∗) relation, with evidence for a flattening of the main sequence at high masses (log 10(M∗/M⊙) > 10.5) that becomesless prominent with increasing redshift and almost vanishes by z ≃ 2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies, which mostly happens over the same redshift range. Within the main sequence, we measure a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor 2. The specific SFR (sSFR = SFR/M∗) of star-forming galaxies is found to continuously increase from z = 0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars: more than two-thirds of present-day stars must have formed in a regime dominated by the “main sequence” mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.
doi_str_mv 10.1051/0004-6361/201425017
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01290113v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855395341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-df26c3218c524bcac531f0e1b5f6e58abeac7ad40a71555be7410562c44788683</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWD9-gZcc9bCa2Xz24EFErVAUoaJ4CWl21q7uNjXZWuuvd2ulZ0_DvDzv8M4MIUfAToFJOGOMiUxxBWc5A5FLBnqL9EDwPGNaqG3S2xC7ZC-lt67NwfAeeRxNkA4wJj_Bmn5WuKChpG0nFqGppm7a0iYUuBJfXe2-lvQ1hkU7oWUMDf2m51TQNvwaZhETdnzhlgdkp3R1wsO_uk8er69Gl4NseH9ze3kxzDw3us2KMleed0G8zMXYOy85lAxhLEuF0rgxOq9dIZjTIKUcoxbduir3QmhjlOH75GQ9d-JqO4tV4-LSBlfZwcXQenSWQd5nAPwTOvZ4zc5i-Jhjam1TJY917aYY5smCkZL3JRf_QpnWyijeoXyN-hhSilhuYgCzq9_Y1eXt6vJ285vOla1dVWrxa2Nx8d0qzbW0hj3Z_svw7kU_PFvDfwDTJY0-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850776863</pqid></control><display><type>article</type><title>The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Schreiber, C. ; Pannella, M. ; Elbaz, D. ; Béthermin, M. ; Inami, H. ; Dickinson, M. ; Magnelli, B. ; Wang, T. ; Aussel, H. ; Daddi, E. ; Juneau, S. ; Shu, X. ; Sargent, M. T. ; Buat, V. ; Faber, S. M. ; Ferguson, H. C. ; Giavalisco, M. ; Koekemoer, A. M. ; Magdis, G. ; Morrison, G. E. ; Papovich, C. ; Santini, P. ; Scott, D.</creator><creatorcontrib>Schreiber, C. ; Pannella, M. ; Elbaz, D. ; Béthermin, M. ; Inami, H. ; Dickinson, M. ; Magnelli, B. ; Wang, T. ; Aussel, H. ; Daddi, E. ; Juneau, S. ; Shu, X. ; Sargent, M. T. ; Buat, V. ; Faber, S. M. ; Ferguson, H. C. ; Giavalisco, M. ; Koekemoer, A. M. ; Magdis, G. ; Morrison, G. E. ; Papovich, C. ; Santini, P. ; Scott, D.</creatorcontrib><description>We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS–North, GOODS–South, UDS, and COSMOS obtained within the GOODS–Herschel and CANDELS–Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supplemented by the stacking analysis of a mass complete sample of 62 361 star-forming galaxies from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey and from two deep ground-based Ks band-selected catalogs in the GOODS–North and the COSMOS-wide field to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called “scatter stacking”, which may be easily generalized to other experiments. The combination of direct UV and far-infrared UV-reprocessed light provides a complete census on the star formation rates (SFRs), allowing us to demonstrate that galaxies at z = 4 to 0 of all stellar masses (M∗) follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the log 10(SFR)–log 10(M∗) relation, with evidence for a flattening of the main sequence at high masses (log 10(M∗/M⊙) &gt; 10.5) that becomesless prominent with increasing redshift and almost vanishes by z ≃ 2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies, which mostly happens over the same redshift range. Within the main sequence, we measure a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor 2. The specific SFR (sSFR = SFR/M∗) of star-forming galaxies is found to continuously increase from z = 0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars: more than two-thirds of present-day stars must have formed in a regime dominated by the “main sequence” mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201425017</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astronomy ; Astrophysics ; Galaxies ; galaxies: active ; galaxies: evolution ; galaxies: starburst ; Hubble Space Telescope ; methods: statistical ; Physics ; Stacking ; Star formation ; Stars ; Universe</subject><ispartof>Astronomy and astrophysics (Berlin), 2015-03, Vol.575, p.A74</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-df26c3218c524bcac531f0e1b5f6e58abeac7ad40a71555be7410562c44788683</citedby><cites>FETCH-LOGICAL-c387t-df26c3218c524bcac531f0e1b5f6e58abeac7ad40a71555be7410562c44788683</cites><orcidid>0000-0003-1033-9684 ; 0000-0001-7113-2738 ; 0000-0002-3915-2015 ; 0000-0002-6777-6490 ; 0000-0002-7020-4290 ; 0000-0001-5414-5131 ; 0000-0003-3441-903X ; 0000-0001-7503-8482 ; 0000-0002-1371-5705 ; 0000-0003-3738-3976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,27924,27925</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01290113$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Schreiber, C.</creatorcontrib><creatorcontrib>Pannella, M.</creatorcontrib><creatorcontrib>Elbaz, D.</creatorcontrib><creatorcontrib>Béthermin, M.</creatorcontrib><creatorcontrib>Inami, H.</creatorcontrib><creatorcontrib>Dickinson, M.</creatorcontrib><creatorcontrib>Magnelli, B.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Aussel, H.</creatorcontrib><creatorcontrib>Daddi, E.</creatorcontrib><creatorcontrib>Juneau, S.</creatorcontrib><creatorcontrib>Shu, X.</creatorcontrib><creatorcontrib>Sargent, M. T.</creatorcontrib><creatorcontrib>Buat, V.</creatorcontrib><creatorcontrib>Faber, S. M.</creatorcontrib><creatorcontrib>Ferguson, H. C.</creatorcontrib><creatorcontrib>Giavalisco, M.</creatorcontrib><creatorcontrib>Koekemoer, A. M.</creatorcontrib><creatorcontrib>Magdis, G.</creatorcontrib><creatorcontrib>Morrison, G. E.</creatorcontrib><creatorcontrib>Papovich, C.</creatorcontrib><creatorcontrib>Santini, P.</creatorcontrib><creatorcontrib>Scott, D.</creatorcontrib><title>The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day</title><title>Astronomy and astrophysics (Berlin)</title><description>We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS–North, GOODS–South, UDS, and COSMOS obtained within the GOODS–Herschel and CANDELS–Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supplemented by the stacking analysis of a mass complete sample of 62 361 star-forming galaxies from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey and from two deep ground-based Ks band-selected catalogs in the GOODS–North and the COSMOS-wide field to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called “scatter stacking”, which may be easily generalized to other experiments. The combination of direct UV and far-infrared UV-reprocessed light provides a complete census on the star formation rates (SFRs), allowing us to demonstrate that galaxies at z = 4 to 0 of all stellar masses (M∗) follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the log 10(SFR)–log 10(M∗) relation, with evidence for a flattening of the main sequence at high masses (log 10(M∗/M⊙) &gt; 10.5) that becomesless prominent with increasing redshift and almost vanishes by z ≃ 2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies, which mostly happens over the same redshift range. Within the main sequence, we measure a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor 2. The specific SFR (sSFR = SFR/M∗) of star-forming galaxies is found to continuously increase from z = 0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars: more than two-thirds of present-day stars must have formed in a regime dominated by the “main sequence” mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Galaxies</subject><subject>galaxies: active</subject><subject>galaxies: evolution</subject><subject>galaxies: starburst</subject><subject>Hubble Space Telescope</subject><subject>methods: statistical</subject><subject>Physics</subject><subject>Stacking</subject><subject>Star formation</subject><subject>Stars</subject><subject>Universe</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LAzEQhoMoWD9-gZcc9bCa2Xz24EFErVAUoaJ4CWl21q7uNjXZWuuvd2ulZ0_DvDzv8M4MIUfAToFJOGOMiUxxBWc5A5FLBnqL9EDwPGNaqG3S2xC7ZC-lt67NwfAeeRxNkA4wJj_Bmn5WuKChpG0nFqGppm7a0iYUuBJfXe2-lvQ1hkU7oWUMDf2m51TQNvwaZhETdnzhlgdkp3R1wsO_uk8er69Gl4NseH9ze3kxzDw3us2KMleed0G8zMXYOy85lAxhLEuF0rgxOq9dIZjTIKUcoxbduir3QmhjlOH75GQ9d-JqO4tV4-LSBlfZwcXQenSWQd5nAPwTOvZ4zc5i-Jhjam1TJY917aYY5smCkZL3JRf_QpnWyijeoXyN-hhSilhuYgCzq9_Y1eXt6vJ285vOla1dVWrxa2Nx8d0qzbW0hj3Z_svw7kU_PFvDfwDTJY0-</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Schreiber, C.</creator><creator>Pannella, M.</creator><creator>Elbaz, D.</creator><creator>Béthermin, M.</creator><creator>Inami, H.</creator><creator>Dickinson, M.</creator><creator>Magnelli, B.</creator><creator>Wang, T.</creator><creator>Aussel, H.</creator><creator>Daddi, E.</creator><creator>Juneau, S.</creator><creator>Shu, X.</creator><creator>Sargent, M. T.</creator><creator>Buat, V.</creator><creator>Faber, S. M.</creator><creator>Ferguson, H. C.</creator><creator>Giavalisco, M.</creator><creator>Koekemoer, A. M.</creator><creator>Magdis, G.</creator><creator>Morrison, G. E.</creator><creator>Papovich, C.</creator><creator>Santini, P.</creator><creator>Scott, D.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1033-9684</orcidid><orcidid>https://orcid.org/0000-0001-7113-2738</orcidid><orcidid>https://orcid.org/0000-0002-3915-2015</orcidid><orcidid>https://orcid.org/0000-0002-6777-6490</orcidid><orcidid>https://orcid.org/0000-0002-7020-4290</orcidid><orcidid>https://orcid.org/0000-0001-5414-5131</orcidid><orcidid>https://orcid.org/0000-0003-3441-903X</orcidid><orcidid>https://orcid.org/0000-0001-7503-8482</orcidid><orcidid>https://orcid.org/0000-0002-1371-5705</orcidid><orcidid>https://orcid.org/0000-0003-3738-3976</orcidid></search><sort><creationdate>20150301</creationdate><title>The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day</title><author>Schreiber, C. ; Pannella, M. ; Elbaz, D. ; Béthermin, M. ; Inami, H. ; Dickinson, M. ; Magnelli, B. ; Wang, T. ; Aussel, H. ; Daddi, E. ; Juneau, S. ; Shu, X. ; Sargent, M. T. ; Buat, V. ; Faber, S. M. ; Ferguson, H. C. ; Giavalisco, M. ; Koekemoer, A. M. ; Magdis, G. ; Morrison, G. E. ; Papovich, C. ; Santini, P. ; Scott, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-df26c3218c524bcac531f0e1b5f6e58abeac7ad40a71555be7410562c44788683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Galaxies</topic><topic>galaxies: active</topic><topic>galaxies: evolution</topic><topic>galaxies: starburst</topic><topic>Hubble Space Telescope</topic><topic>methods: statistical</topic><topic>Physics</topic><topic>Stacking</topic><topic>Star formation</topic><topic>Stars</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schreiber, C.</creatorcontrib><creatorcontrib>Pannella, M.</creatorcontrib><creatorcontrib>Elbaz, D.</creatorcontrib><creatorcontrib>Béthermin, M.</creatorcontrib><creatorcontrib>Inami, H.</creatorcontrib><creatorcontrib>Dickinson, M.</creatorcontrib><creatorcontrib>Magnelli, B.</creatorcontrib><creatorcontrib>Wang, T.</creatorcontrib><creatorcontrib>Aussel, H.</creatorcontrib><creatorcontrib>Daddi, E.</creatorcontrib><creatorcontrib>Juneau, S.</creatorcontrib><creatorcontrib>Shu, X.</creatorcontrib><creatorcontrib>Sargent, M. T.</creatorcontrib><creatorcontrib>Buat, V.</creatorcontrib><creatorcontrib>Faber, S. M.</creatorcontrib><creatorcontrib>Ferguson, H. C.</creatorcontrib><creatorcontrib>Giavalisco, M.</creatorcontrib><creatorcontrib>Koekemoer, A. M.</creatorcontrib><creatorcontrib>Magdis, G.</creatorcontrib><creatorcontrib>Morrison, G. E.</creatorcontrib><creatorcontrib>Papovich, C.</creatorcontrib><creatorcontrib>Santini, P.</creatorcontrib><creatorcontrib>Scott, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schreiber, C.</au><au>Pannella, M.</au><au>Elbaz, D.</au><au>Béthermin, M.</au><au>Inami, H.</au><au>Dickinson, M.</au><au>Magnelli, B.</au><au>Wang, T.</au><au>Aussel, H.</au><au>Daddi, E.</au><au>Juneau, S.</au><au>Shu, X.</au><au>Sargent, M. T.</au><au>Buat, V.</au><au>Faber, S. M.</au><au>Ferguson, H. C.</au><au>Giavalisco, M.</au><au>Koekemoer, A. M.</au><au>Magdis, G.</au><au>Morrison, G. E.</au><au>Papovich, C.</au><au>Santini, P.</au><au>Scott, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>575</volume><spage>A74</spage><pages>A74-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS–North, GOODS–South, UDS, and COSMOS obtained within the GOODS–Herschel and CANDELS–Herschel key programs. The star formation picture provided by a total of 10 497 individual far-infrared detections is supplemented by the stacking analysis of a mass complete sample of 62 361 star-forming galaxies from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey and from two deep ground-based Ks band-selected catalogs in the GOODS–North and the COSMOS-wide field to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called “scatter stacking”, which may be easily generalized to other experiments. The combination of direct UV and far-infrared UV-reprocessed light provides a complete census on the star formation rates (SFRs), allowing us to demonstrate that galaxies at z = 4 to 0 of all stellar masses (M∗) follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the log 10(SFR)–log 10(M∗) relation, with evidence for a flattening of the main sequence at high masses (log 10(M∗/M⊙) &gt; 10.5) that becomesless prominent with increasing redshift and almost vanishes by z ≃ 2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies, which mostly happens over the same redshift range. Within the main sequence, we measure a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor 2. The specific SFR (sSFR = SFR/M∗) of star-forming galaxies is found to continuously increase from z = 0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars: more than two-thirds of present-day stars must have formed in a regime dominated by the “main sequence” mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201425017</doi><orcidid>https://orcid.org/0000-0003-1033-9684</orcidid><orcidid>https://orcid.org/0000-0001-7113-2738</orcidid><orcidid>https://orcid.org/0000-0002-3915-2015</orcidid><orcidid>https://orcid.org/0000-0002-6777-6490</orcidid><orcidid>https://orcid.org/0000-0002-7020-4290</orcidid><orcidid>https://orcid.org/0000-0001-5414-5131</orcidid><orcidid>https://orcid.org/0000-0003-3441-903X</orcidid><orcidid>https://orcid.org/0000-0001-7503-8482</orcidid><orcidid>https://orcid.org/0000-0002-1371-5705</orcidid><orcidid>https://orcid.org/0000-0003-3738-3976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2015-03, Vol.575, p.A74
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_cea_01290113v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Astronomy
Astrophysics
Galaxies
galaxies: active
galaxies: evolution
galaxies: starburst
Hubble Space Telescope
methods: statistical
Physics
Stacking
Star formation
Stars
Universe
title The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Herschel%20view%20of%20the%20dominant%20mode%20of%20galaxy%20growth%20from%20z%20=%204%20to%20the%20present%20day&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Schreiber,%20C.&rft.date=2015-03-01&rft.volume=575&rft.spage=A74&rft.pages=A74-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201425017&rft_dat=%3Cproquest_hal_p%3E1855395341%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850776863&rft_id=info:pmid/&rfr_iscdi=true