A PCA-based automated finder for galaxy-scale strong lenses

We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial Einstein rings. Starting from a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2014-06, Vol.566, p.np-np
Hauptverfasser: Joseph, R., Courbin, F., Metcalf, R. B., Giocoli, C., Hartley, P., Jackson, N., Bellagamba, F., Kneib, J.-P., Koopmans, L., Lemson, G., Meneghetti, M., Meylan, G., Petkova, M., Pires, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue
container_start_page np
container_title Astronomy and astrophysics (Berlin)
container_volume 566
creator Joseph, R.
Courbin, F.
Metcalf, R. B.
Giocoli, C.
Hartley, P.
Jackson, N.
Bellagamba, F.
Kneib, J.-P.
Koopmans, L.
Lemson, G.
Meneghetti, M.
Meylan, G.
Petkova, M.
Pires, S.
description We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centred on the lens galaxy. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity, and elongation. We applied the two methods to a sample of simulated Einstein rings as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinate transform allowed us to reach a completeness of 90% for a purity of 86%, as soon as the signal-to-noise integrated in the ring was higher than 30 and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.
doi_str_mv 10.1051/0004-6361/201423365
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01271008v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651439079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-81828ca619bf1b0b03191073820515ba9cc03bd1a4778509d3e33e517fa1b2213</originalsourceid><addsrcrecordid>eNqNkUFPwzAMhSMEEmPwC7j0CIcyO2mbRJyqARtoEiCBOEZum45C10LSoe3f06loZ062pe9Z9nuMnSNcIcQ4AYAoTESCEw4YcSGS-ICNMBI8BBklh2y0J47Zifcf_chRiRG7ToOnaRpm5G0R0LprV9T1XVk1hXVB2bpgSTVttqHPqbaB71zbLIPaNt76U3ZUUu3t2V8ds9e725fpPFw8zu6n6SLMI626UKHiKqcEdVZiBhkI1AhSKN6fHmek8xxEViBFUqoYdCGsEDZGWRJmnKMYs8th7zvV5stVK3Jb01Jl5unC5JYMIJcIoH527MXAfrn2e219Z1aVz21dU2PbtTeYxL0tGqT-Byq0VjpK4h4VA5q71ntny_0ZCGaXgNn5a3b-mn0CvSocVJXv7GYvIfdpEilkbBS8Gbzpv36ePZiZ-AU4KYMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639989465</pqid></control><display><type>article</type><title>A PCA-based automated finder for galaxy-scale strong lenses</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Joseph, R. ; Courbin, F. ; Metcalf, R. B. ; Giocoli, C. ; Hartley, P. ; Jackson, N. ; Bellagamba, F. ; Kneib, J.-P. ; Koopmans, L. ; Lemson, G. ; Meneghetti, M. ; Meylan, G. ; Petkova, M. ; Pires, S.</creator><creatorcontrib>Joseph, R. ; Courbin, F. ; Metcalf, R. B. ; Giocoli, C. ; Hartley, P. ; Jackson, N. ; Bellagamba, F. ; Kneib, J.-P. ; Koopmans, L. ; Lemson, G. ; Meneghetti, M. ; Meylan, G. ; Petkova, M. ; Pires, S.</creatorcontrib><description>We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centred on the lens galaxy. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity, and elongation. We applied the two methods to a sample of simulated Einstein rings as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinate transform allowed us to reach a completeness of 90% for a purity of 86%, as soon as the signal-to-noise integrated in the ring was higher than 30 and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201423365</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Algorithms ; Astrophysics ; Construction ; cosmological parameters ; dark matter ; Fittings ; Galaxies ; gravitational lensing: strong ; Imaging ; methods: data analysis ; Physics ; Principal component analysis ; Subtraction ; surveys ; techniques: image processing</subject><ispartof>Astronomy and astrophysics (Berlin), 2014-06, Vol.566, p.np-np</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-81828ca619bf1b0b03191073820515ba9cc03bd1a4778509d3e33e517fa1b2213</citedby><cites>FETCH-LOGICAL-c498t-81828ca619bf1b0b03191073820515ba9cc03bd1a4778509d3e33e517fa1b2213</cites><orcidid>0000-0003-1225-7084 ; 0000-0002-9590-7961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01271008$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Joseph, R.</creatorcontrib><creatorcontrib>Courbin, F.</creatorcontrib><creatorcontrib>Metcalf, R. B.</creatorcontrib><creatorcontrib>Giocoli, C.</creatorcontrib><creatorcontrib>Hartley, P.</creatorcontrib><creatorcontrib>Jackson, N.</creatorcontrib><creatorcontrib>Bellagamba, F.</creatorcontrib><creatorcontrib>Kneib, J.-P.</creatorcontrib><creatorcontrib>Koopmans, L.</creatorcontrib><creatorcontrib>Lemson, G.</creatorcontrib><creatorcontrib>Meneghetti, M.</creatorcontrib><creatorcontrib>Meylan, G.</creatorcontrib><creatorcontrib>Petkova, M.</creatorcontrib><creatorcontrib>Pires, S.</creatorcontrib><title>A PCA-based automated finder for galaxy-scale strong lenses</title><title>Astronomy and astrophysics (Berlin)</title><description>We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centred on the lens galaxy. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity, and elongation. We applied the two methods to a sample of simulated Einstein rings as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinate transform allowed us to reach a completeness of 90% for a purity of 86%, as soon as the signal-to-noise integrated in the ring was higher than 30 and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Construction</subject><subject>cosmological parameters</subject><subject>dark matter</subject><subject>Fittings</subject><subject>Galaxies</subject><subject>gravitational lensing: strong</subject><subject>Imaging</subject><subject>methods: data analysis</subject><subject>Physics</subject><subject>Principal component analysis</subject><subject>Subtraction</subject><subject>surveys</subject><subject>techniques: image processing</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUFPwzAMhSMEEmPwC7j0CIcyO2mbRJyqARtoEiCBOEZum45C10LSoe3f06loZ062pe9Z9nuMnSNcIcQ4AYAoTESCEw4YcSGS-ICNMBI8BBklh2y0J47Zifcf_chRiRG7ToOnaRpm5G0R0LprV9T1XVk1hXVB2bpgSTVttqHPqbaB71zbLIPaNt76U3ZUUu3t2V8ds9e725fpPFw8zu6n6SLMI626UKHiKqcEdVZiBhkI1AhSKN6fHmek8xxEViBFUqoYdCGsEDZGWRJmnKMYs8th7zvV5stVK3Jb01Jl5unC5JYMIJcIoH527MXAfrn2e219Z1aVz21dU2PbtTeYxL0tGqT-Byq0VjpK4h4VA5q71ntny_0ZCGaXgNn5a3b-mn0CvSocVJXv7GYvIfdpEilkbBS8Gbzpv36ePZiZ-AU4KYMo</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Joseph, R.</creator><creator>Courbin, F.</creator><creator>Metcalf, R. B.</creator><creator>Giocoli, C.</creator><creator>Hartley, P.</creator><creator>Jackson, N.</creator><creator>Bellagamba, F.</creator><creator>Kneib, J.-P.</creator><creator>Koopmans, L.</creator><creator>Lemson, G.</creator><creator>Meneghetti, M.</creator><creator>Meylan, G.</creator><creator>Petkova, M.</creator><creator>Pires, S.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1225-7084</orcidid><orcidid>https://orcid.org/0000-0002-9590-7961</orcidid></search><sort><creationdate>20140601</creationdate><title>A PCA-based automated finder for galaxy-scale strong lenses</title><author>Joseph, R. ; Courbin, F. ; Metcalf, R. B. ; Giocoli, C. ; Hartley, P. ; Jackson, N. ; Bellagamba, F. ; Kneib, J.-P. ; Koopmans, L. ; Lemson, G. ; Meneghetti, M. ; Meylan, G. ; Petkova, M. ; Pires, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-81828ca619bf1b0b03191073820515ba9cc03bd1a4778509d3e33e517fa1b2213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Construction</topic><topic>cosmological parameters</topic><topic>dark matter</topic><topic>Fittings</topic><topic>Galaxies</topic><topic>gravitational lensing: strong</topic><topic>Imaging</topic><topic>methods: data analysis</topic><topic>Physics</topic><topic>Principal component analysis</topic><topic>Subtraction</topic><topic>surveys</topic><topic>techniques: image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, R.</creatorcontrib><creatorcontrib>Courbin, F.</creatorcontrib><creatorcontrib>Metcalf, R. B.</creatorcontrib><creatorcontrib>Giocoli, C.</creatorcontrib><creatorcontrib>Hartley, P.</creatorcontrib><creatorcontrib>Jackson, N.</creatorcontrib><creatorcontrib>Bellagamba, F.</creatorcontrib><creatorcontrib>Kneib, J.-P.</creatorcontrib><creatorcontrib>Koopmans, L.</creatorcontrib><creatorcontrib>Lemson, G.</creatorcontrib><creatorcontrib>Meneghetti, M.</creatorcontrib><creatorcontrib>Meylan, G.</creatorcontrib><creatorcontrib>Petkova, M.</creatorcontrib><creatorcontrib>Pires, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, R.</au><au>Courbin, F.</au><au>Metcalf, R. B.</au><au>Giocoli, C.</au><au>Hartley, P.</au><au>Jackson, N.</au><au>Bellagamba, F.</au><au>Kneib, J.-P.</au><au>Koopmans, L.</au><au>Lemson, G.</au><au>Meneghetti, M.</au><au>Meylan, G.</au><au>Petkova, M.</au><au>Pires, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PCA-based automated finder for galaxy-scale strong lenses</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>566</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centred on the lens galaxy. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity, and elongation. We applied the two methods to a sample of simulated Einstein rings as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinate transform allowed us to reach a completeness of 90% for a purity of 86%, as soon as the signal-to-noise integrated in the ring was higher than 30 and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201423365</doi><orcidid>https://orcid.org/0000-0003-1225-7084</orcidid><orcidid>https://orcid.org/0000-0002-9590-7961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2014-06, Vol.566, p.np-np
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_cea_01271008v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Astrophysics
Construction
cosmological parameters
dark matter
Fittings
Galaxies
gravitational lensing: strong
Imaging
methods: data analysis
Physics
Principal component analysis
Subtraction
surveys
techniques: image processing
title A PCA-based automated finder for galaxy-scale strong lenses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PCA-based%20automated%20finder%20for%20galaxy-scale%20strong%20lenses&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Joseph,%20R.&rft.date=2014-06-01&rft.volume=566&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201423365&rft_dat=%3Cproquest_hal_p%3E1651439079%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639989465&rft_id=info:pmid/&rfr_iscdi=true