Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer
The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency’s Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at object...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2013-08, Vol.556, p.np-np |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | np |
---|---|
container_issue | |
container_start_page | np |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 556 |
creator | Wu, R. Polehampton, E. T. Etxaluze, M. Makiwa, G. Naylor, D. A. Salji, C. Swinyard, B. M. Ferlet, M. van der Wiel, M. H. D. Smith, A. J. Fulton, T. Griffin, M. J. Baluteau, J.-P. Benielli, D. Glenn, J. Hopwood, R. Imhof, P. Lim, T. Lu, N. Panuzzo, P. Pearson, C. Sidher, S. Valtchanov, I. |
description | The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency’s Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent that is much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source’s light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and considering the source’s light profile. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam coupling efficiency of the instrument in the case of partially extended sources. We find that we can apply these correction factors for sources with angular sizes up to θD ~ 17′′. We demonstrate how the angular size of an extended source can be estimated using the difference between the subspectra observed at the overlap bandwidth of the two frequency channels in the spectrometer, at 959 |
doi_str_mv | 10.1051/0004-6361/201321837 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01135415v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560137838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e8e07548c7e4aaf53e595bc9b02bb781574f2e402fa1ea73bf445de66ce569c73</originalsourceid><addsrcrecordid>eNqFkUtPwkAUhSdGExH9BW5mqYvKvKddEoKWpAlP43IyHW6lWijOFMR_bwmGraubk_udm5tzELqn5IkSSXuEEBEprmiPEcoZjbm-QB0qOIuIFuoSdc7ENboJ4aOVR6qDpuM8gN-Xm3cMhwY2S1jiUO-8g4C_y2aFmxXgFHxwK6jwfDKaDfFzuy_B44W3m1DUfo3nW3CNr9fQgL9FV4WtAtz9zS56fR4uBmmUjV9Gg34WOR7rJoIYiJYidhqEtYXkIBOZuyQnLM91TKUWBQNBWGEpWM3zQgi5BKUcSJU4zbvo8XR3ZSuz9eXa-h9T29Kk_cw4sIZQyqWgck9b9uHEbn39tYPQmHUZHFSV3UC9C4YqrRPNEsH-R6VqI9Yxj1uUn1Dn6xA8FOc3KDHHXswxdXNM3Zx7aV3RyVWGBg5ni_WfRmmupYnJmyGTWZplmpkp_wUUO43D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560137838</pqid></control><display><type>article</type><title>Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, R. ; Polehampton, E. T. ; Etxaluze, M. ; Makiwa, G. ; Naylor, D. A. ; Salji, C. ; Swinyard, B. M. ; Ferlet, M. ; van der Wiel, M. H. D. ; Smith, A. J. ; Fulton, T. ; Griffin, M. J. ; Baluteau, J.-P. ; Benielli, D. ; Glenn, J. ; Hopwood, R. ; Imhof, P. ; Lim, T. ; Lu, N. ; Panuzzo, P. ; Pearson, C. ; Sidher, S. ; Valtchanov, I.</creator><creatorcontrib>Wu, R. ; Polehampton, E. T. ; Etxaluze, M. ; Makiwa, G. ; Naylor, D. A. ; Salji, C. ; Swinyard, B. M. ; Ferlet, M. ; van der Wiel, M. H. D. ; Smith, A. J. ; Fulton, T. ; Griffin, M. J. ; Baluteau, J.-P. ; Benielli, D. ; Glenn, J. ; Hopwood, R. ; Imhof, P. ; Lim, T. ; Lu, N. ; Panuzzo, P. ; Pearson, C. ; Sidher, S. ; Valtchanov, I.</creatorcontrib><description>The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency’s Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent that is much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source’s light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and considering the source’s light profile. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam coupling efficiency of the instrument in the case of partially extended sources. We find that we can apply these correction factors for sources with angular sizes up to θD ~ 17′′. We demonstrate how the angular size of an extended source can be estimated using the difference between the subspectra observed at the overlap bandwidth of the two frequency channels in the spectrometer, at 959 < ν < 989 GHz. Using this technique on an observation of Saturn, we estimate a size of 17.2′′, which is 3% larger than its true size on the day of observation. Finally, we show the results of the correction applied on observations of a nearby galaxy, M82, and the compact core of a Galactic molecular cloud, Sgr B2.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201321837</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Beams (radiation) ; Calibration ; Data reduction ; Fourier transform spectrometers ; Imaging spectrometers ; instrumentation: spectrographs ; methods: analytical ; methods: data analysis ; Photometry ; Physics ; Pollution sources ; Spires ; techniques: spectroscopic</subject><ispartof>Astronomy and astrophysics (Berlin), 2013-08, Vol.556, p.np-np</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e8e07548c7e4aaf53e595bc9b02bb781574f2e402fa1ea73bf445de66ce569c73</citedby><cites>FETCH-LOGICAL-c387t-e8e07548c7e4aaf53e595bc9b02bb781574f2e402fa1ea73bf445de66ce569c73</cites><orcidid>0000-0002-0016-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01135415$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, R.</creatorcontrib><creatorcontrib>Polehampton, E. T.</creatorcontrib><creatorcontrib>Etxaluze, M.</creatorcontrib><creatorcontrib>Makiwa, G.</creatorcontrib><creatorcontrib>Naylor, D. A.</creatorcontrib><creatorcontrib>Salji, C.</creatorcontrib><creatorcontrib>Swinyard, B. M.</creatorcontrib><creatorcontrib>Ferlet, M.</creatorcontrib><creatorcontrib>van der Wiel, M. H. D.</creatorcontrib><creatorcontrib>Smith, A. J.</creatorcontrib><creatorcontrib>Fulton, T.</creatorcontrib><creatorcontrib>Griffin, M. J.</creatorcontrib><creatorcontrib>Baluteau, J.-P.</creatorcontrib><creatorcontrib>Benielli, D.</creatorcontrib><creatorcontrib>Glenn, J.</creatorcontrib><creatorcontrib>Hopwood, R.</creatorcontrib><creatorcontrib>Imhof, P.</creatorcontrib><creatorcontrib>Lim, T.</creatorcontrib><creatorcontrib>Lu, N.</creatorcontrib><creatorcontrib>Panuzzo, P.</creatorcontrib><creatorcontrib>Pearson, C.</creatorcontrib><creatorcontrib>Sidher, S.</creatorcontrib><creatorcontrib>Valtchanov, I.</creatorcontrib><title>Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer</title><title>Astronomy and astrophysics (Berlin)</title><description>The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency’s Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent that is much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source’s light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and considering the source’s light profile. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam coupling efficiency of the instrument in the case of partially extended sources. We find that we can apply these correction factors for sources with angular sizes up to θD ~ 17′′. We demonstrate how the angular size of an extended source can be estimated using the difference between the subspectra observed at the overlap bandwidth of the two frequency channels in the spectrometer, at 959 < ν < 989 GHz. Using this technique on an observation of Saturn, we estimate a size of 17.2′′, which is 3% larger than its true size on the day of observation. Finally, we show the results of the correction applied on observations of a nearby galaxy, M82, and the compact core of a Galactic molecular cloud, Sgr B2.</description><subject>Astrophysics</subject><subject>Beams (radiation)</subject><subject>Calibration</subject><subject>Data reduction</subject><subject>Fourier transform spectrometers</subject><subject>Imaging spectrometers</subject><subject>instrumentation: spectrographs</subject><subject>methods: analytical</subject><subject>methods: data analysis</subject><subject>Photometry</subject><subject>Physics</subject><subject>Pollution sources</subject><subject>Spires</subject><subject>techniques: spectroscopic</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwkAUhSdGExH9BW5mqYvKvKddEoKWpAlP43IyHW6lWijOFMR_bwmGraubk_udm5tzELqn5IkSSXuEEBEprmiPEcoZjbm-QB0qOIuIFuoSdc7ENboJ4aOVR6qDpuM8gN-Xm3cMhwY2S1jiUO-8g4C_y2aFmxXgFHxwK6jwfDKaDfFzuy_B44W3m1DUfo3nW3CNr9fQgL9FV4WtAtz9zS56fR4uBmmUjV9Gg34WOR7rJoIYiJYidhqEtYXkIBOZuyQnLM91TKUWBQNBWGEpWM3zQgi5BKUcSJU4zbvo8XR3ZSuz9eXa-h9T29Kk_cw4sIZQyqWgck9b9uHEbn39tYPQmHUZHFSV3UC9C4YqrRPNEsH-R6VqI9Yxj1uUn1Dn6xA8FOc3KDHHXswxdXNM3Zx7aV3RyVWGBg5ni_WfRmmupYnJmyGTWZplmpkp_wUUO43D</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Wu, R.</creator><creator>Polehampton, E. T.</creator><creator>Etxaluze, M.</creator><creator>Makiwa, G.</creator><creator>Naylor, D. A.</creator><creator>Salji, C.</creator><creator>Swinyard, B. M.</creator><creator>Ferlet, M.</creator><creator>van der Wiel, M. H. D.</creator><creator>Smith, A. J.</creator><creator>Fulton, T.</creator><creator>Griffin, M. J.</creator><creator>Baluteau, J.-P.</creator><creator>Benielli, D.</creator><creator>Glenn, J.</creator><creator>Hopwood, R.</creator><creator>Imhof, P.</creator><creator>Lim, T.</creator><creator>Lu, N.</creator><creator>Panuzzo, P.</creator><creator>Pearson, C.</creator><creator>Sidher, S.</creator><creator>Valtchanov, I.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0016-8271</orcidid></search><sort><creationdate>20130801</creationdate><title>Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer</title><author>Wu, R. ; Polehampton, E. T. ; Etxaluze, M. ; Makiwa, G. ; Naylor, D. A. ; Salji, C. ; Swinyard, B. M. ; Ferlet, M. ; van der Wiel, M. H. D. ; Smith, A. J. ; Fulton, T. ; Griffin, M. J. ; Baluteau, J.-P. ; Benielli, D. ; Glenn, J. ; Hopwood, R. ; Imhof, P. ; Lim, T. ; Lu, N. ; Panuzzo, P. ; Pearson, C. ; Sidher, S. ; Valtchanov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e8e07548c7e4aaf53e595bc9b02bb781574f2e402fa1ea73bf445de66ce569c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astrophysics</topic><topic>Beams (radiation)</topic><topic>Calibration</topic><topic>Data reduction</topic><topic>Fourier transform spectrometers</topic><topic>Imaging spectrometers</topic><topic>instrumentation: spectrographs</topic><topic>methods: analytical</topic><topic>methods: data analysis</topic><topic>Photometry</topic><topic>Physics</topic><topic>Pollution sources</topic><topic>Spires</topic><topic>techniques: spectroscopic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, R.</creatorcontrib><creatorcontrib>Polehampton, E. T.</creatorcontrib><creatorcontrib>Etxaluze, M.</creatorcontrib><creatorcontrib>Makiwa, G.</creatorcontrib><creatorcontrib>Naylor, D. A.</creatorcontrib><creatorcontrib>Salji, C.</creatorcontrib><creatorcontrib>Swinyard, B. M.</creatorcontrib><creatorcontrib>Ferlet, M.</creatorcontrib><creatorcontrib>van der Wiel, M. H. D.</creatorcontrib><creatorcontrib>Smith, A. J.</creatorcontrib><creatorcontrib>Fulton, T.</creatorcontrib><creatorcontrib>Griffin, M. J.</creatorcontrib><creatorcontrib>Baluteau, J.-P.</creatorcontrib><creatorcontrib>Benielli, D.</creatorcontrib><creatorcontrib>Glenn, J.</creatorcontrib><creatorcontrib>Hopwood, R.</creatorcontrib><creatorcontrib>Imhof, P.</creatorcontrib><creatorcontrib>Lim, T.</creatorcontrib><creatorcontrib>Lu, N.</creatorcontrib><creatorcontrib>Panuzzo, P.</creatorcontrib><creatorcontrib>Pearson, C.</creatorcontrib><creatorcontrib>Sidher, S.</creatorcontrib><creatorcontrib>Valtchanov, I.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, R.</au><au>Polehampton, E. T.</au><au>Etxaluze, M.</au><au>Makiwa, G.</au><au>Naylor, D. A.</au><au>Salji, C.</au><au>Swinyard, B. M.</au><au>Ferlet, M.</au><au>van der Wiel, M. H. D.</au><au>Smith, A. J.</au><au>Fulton, T.</au><au>Griffin, M. J.</au><au>Baluteau, J.-P.</au><au>Benielli, D.</au><au>Glenn, J.</au><au>Hopwood, R.</au><au>Imhof, P.</au><au>Lim, T.</au><au>Lu, N.</au><au>Panuzzo, P.</au><au>Pearson, C.</au><au>Sidher, S.</au><au>Valtchanov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>556</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency’s Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent that is much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source’s light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and considering the source’s light profile. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam coupling efficiency of the instrument in the case of partially extended sources. We find that we can apply these correction factors for sources with angular sizes up to θD ~ 17′′. We demonstrate how the angular size of an extended source can be estimated using the difference between the subspectra observed at the overlap bandwidth of the two frequency channels in the spectrometer, at 959 < ν < 989 GHz. Using this technique on an observation of Saturn, we estimate a size of 17.2′′, which is 3% larger than its true size on the day of observation. Finally, we show the results of the correction applied on observations of a nearby galaxy, M82, and the compact core of a Galactic molecular cloud, Sgr B2.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201321837</doi><orcidid>https://orcid.org/0000-0002-0016-8271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2013-08, Vol.556, p.np-np |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_01135415v1 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals |
subjects | Astrophysics Beams (radiation) Calibration Data reduction Fourier transform spectrometers Imaging spectrometers instrumentation: spectrographs methods: analytical methods: data analysis Photometry Physics Pollution sources Spires techniques: spectroscopic |
title | Observing extended sources with the Herschel SPIRE Fourier Transform Spectrometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observing%20extended%20sources%20with%20the%20Herschel%20SPIRE%20Fourier%20Transform%20Spectrometer&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Wu,%20R.&rft.date=2013-08-01&rft.volume=556&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201321837&rft_dat=%3Cproquest_hal_p%3E1560137838%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560137838&rft_id=info:pmid/&rfr_iscdi=true |