Magnetic confinement of the solar tachocline: The oblique dipole
3D MHD global solar simulations coupling the turbulent convective zone and the radiative zone have been carried out. Essential features of the Sun such as differential rotation, meridional circulation and internal waves excitation are recovered. These realistic models are used to test the possibilit...
Gespeichert in:
Veröffentlicht in: | Astronomische Nachrichten 2011-12, Vol.332 (9-10), p.891-896 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 896 |
---|---|
container_issue | 9-10 |
container_start_page | 891 |
container_title | Astronomische Nachrichten |
container_volume | 332 |
creator | Strugarek, A. Brun, A. S. Zahn, J.-P. |
description | 3D MHD global solar simulations coupling the turbulent convective zone and the radiative zone have been carried out. Essential features of the Sun such as differential rotation, meridional circulation and internal waves excitation are recovered. These realistic models are used to test the possibility of having the solar tachocline confined by a primordial inner magnetic field. We find that the initially confined magnetic fields we consider open into the convective envelope. Angular momentum is transported across the two zones by magnetic torques and stresses, establishing the so‐called Ferarro's law of isorotation. In the parameter space studied, the confinement of the magnetic field by meridional circulation penetration fails, also implying the failure of the tachocline confinement by the magnetic field. Three‐dimensional convective motions are proven responsible for the lack of magnetic field confinement. Those results are robust for the different magnetic field topologies considered, i.e. aligned or oblique dipole (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/asna.201111613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_00828249v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559698991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4623-8b4af3eeac6db6ce2d41866134dc5d1a1479022ddc7c6c8fa954122ca17870df3</originalsourceid><addsrcrecordid>eNqFkM1P2zAYhy3EJErHlXOkXcYhxV9x4p2oqq0dKx_SiuBmvXWc1cWNS5xu9L-fo0wV2gVfLNvP8-rnH0LnBI8IxvQSQg0jiklcgrAjNCAZJSmTkh-jAcaYp4Kx_ASdhrCORykoGaCrG_hVm9bqRPu6srXZmLpNfJW0K5ME76BJWtArr118-5Is4q1fOvuyM0lpt96Zj-hDBS6Ys3_7ED18-7qYzNL53fT7ZDxPNReUpcWSQ8WMAS3KpdCGlpwUIubkpc5KAoTnElNaljrXQhcVyIwTSjWQvMhxWbEhuujnrsCpbWM30OyVB6tm47nSBhTGBS0ol79JZD_37LbxMWlo1cYGbZyD2vhdUCTLpJCFlB366T907XdNHX_SUZwRJhmP1KindONDaEx1SECw6spXXfnqUH4UZC_8sc7s36HV-Oft-K2b9q4NrXk9uNA8K5GzPFOPt1M1ZT_E9f1ioZ7YX_YilaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554313934</pqid></control><display><type>article</type><title>Magnetic confinement of the solar tachocline: The oblique dipole</title><source>Wiley Online Library</source><creator>Strugarek, A. ; Brun, A. S. ; Zahn, J.-P.</creator><creatorcontrib>Strugarek, A. ; Brun, A. S. ; Zahn, J.-P.</creatorcontrib><description>3D MHD global solar simulations coupling the turbulent convective zone and the radiative zone have been carried out. Essential features of the Sun such as differential rotation, meridional circulation and internal waves excitation are recovered. These realistic models are used to test the possibility of having the solar tachocline confined by a primordial inner magnetic field. We find that the initially confined magnetic fields we consider open into the convective envelope. Angular momentum is transported across the two zones by magnetic torques and stresses, establishing the so‐called Ferarro's law of isorotation. In the parameter space studied, the confinement of the magnetic field by meridional circulation penetration fails, also implying the failure of the tachocline confinement by the magnetic field. Three‐dimensional convective motions are proven responsible for the lack of magnetic field confinement. Those results are robust for the different magnetic field topologies considered, i.e. aligned or oblique dipole (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0004-6337</identifier><identifier>EISSN: 1521-3994</identifier><identifier>DOI: 10.1002/asna.201111613</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Astrophysics ; Circulation ; Confinement ; convection ; Differential rotation ; Dipoles ; Failure ; Magnetic fields ; Magnetohydrodynamics ; magnetohydrodynamics (MHD) ; Sciences of the Universe ; Solar and Stellar Astrophysics ; Sun: interior ; Sun: magnetic fields ; Sun: rotation ; Three dimensional</subject><ispartof>Astronomische Nachrichten, 2011-12, Vol.332 (9-10), p.891-896</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4623-8b4af3eeac6db6ce2d41866134dc5d1a1479022ddc7c6c8fa954122ca17870df3</citedby><cites>FETCH-LOGICAL-c4623-8b4af3eeac6db6ce2d41866134dc5d1a1479022ddc7c6c8fa954122ca17870df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasna.201111613$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasna.201111613$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-00828249$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Strugarek, A.</creatorcontrib><creatorcontrib>Brun, A. S.</creatorcontrib><creatorcontrib>Zahn, J.-P.</creatorcontrib><title>Magnetic confinement of the solar tachocline: The oblique dipole</title><title>Astronomische Nachrichten</title><addtitle>Astron. Nachr</addtitle><description>3D MHD global solar simulations coupling the turbulent convective zone and the radiative zone have been carried out. Essential features of the Sun such as differential rotation, meridional circulation and internal waves excitation are recovered. These realistic models are used to test the possibility of having the solar tachocline confined by a primordial inner magnetic field. We find that the initially confined magnetic fields we consider open into the convective envelope. Angular momentum is transported across the two zones by magnetic torques and stresses, establishing the so‐called Ferarro's law of isorotation. In the parameter space studied, the confinement of the magnetic field by meridional circulation penetration fails, also implying the failure of the tachocline confinement by the magnetic field. Three‐dimensional convective motions are proven responsible for the lack of magnetic field confinement. Those results are robust for the different magnetic field topologies considered, i.e. aligned or oblique dipole (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>Astrophysics</subject><subject>Circulation</subject><subject>Confinement</subject><subject>convection</subject><subject>Differential rotation</subject><subject>Dipoles</subject><subject>Failure</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>magnetohydrodynamics (MHD)</subject><subject>Sciences of the Universe</subject><subject>Solar and Stellar Astrophysics</subject><subject>Sun: interior</subject><subject>Sun: magnetic fields</subject><subject>Sun: rotation</subject><subject>Three dimensional</subject><issn>0004-6337</issn><issn>1521-3994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1P2zAYhy3EJErHlXOkXcYhxV9x4p2oqq0dKx_SiuBmvXWc1cWNS5xu9L-fo0wV2gVfLNvP8-rnH0LnBI8IxvQSQg0jiklcgrAjNCAZJSmTkh-jAcaYp4Kx_ASdhrCORykoGaCrG_hVm9bqRPu6srXZmLpNfJW0K5ME76BJWtArr118-5Is4q1fOvuyM0lpt96Zj-hDBS6Ys3_7ED18-7qYzNL53fT7ZDxPNReUpcWSQ8WMAS3KpdCGlpwUIubkpc5KAoTnElNaljrXQhcVyIwTSjWQvMhxWbEhuujnrsCpbWM30OyVB6tm47nSBhTGBS0ol79JZD_37LbxMWlo1cYGbZyD2vhdUCTLpJCFlB366T907XdNHX_SUZwRJhmP1KindONDaEx1SECw6spXXfnqUH4UZC_8sc7s36HV-Oft-K2b9q4NrXk9uNA8K5GzPFOPt1M1ZT_E9f1ioZ7YX_YilaQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Strugarek, A.</creator><creator>Brun, A. S.</creator><creator>Zahn, J.-P.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201112</creationdate><title>Magnetic confinement of the solar tachocline: The oblique dipole</title><author>Strugarek, A. ; Brun, A. S. ; Zahn, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4623-8b4af3eeac6db6ce2d41866134dc5d1a1479022ddc7c6c8fa954122ca17870df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Astrophysics</topic><topic>Circulation</topic><topic>Confinement</topic><topic>convection</topic><topic>Differential rotation</topic><topic>Dipoles</topic><topic>Failure</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>magnetohydrodynamics (MHD)</topic><topic>Sciences of the Universe</topic><topic>Solar and Stellar Astrophysics</topic><topic>Sun: interior</topic><topic>Sun: magnetic fields</topic><topic>Sun: rotation</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strugarek, A.</creatorcontrib><creatorcontrib>Brun, A. S.</creatorcontrib><creatorcontrib>Zahn, J.-P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strugarek, A.</au><au>Brun, A. S.</au><au>Zahn, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic confinement of the solar tachocline: The oblique dipole</atitle><jtitle>Astronomische Nachrichten</jtitle><addtitle>Astron. Nachr</addtitle><date>2011-12</date><risdate>2011</risdate><volume>332</volume><issue>9-10</issue><spage>891</spage><epage>896</epage><pages>891-896</pages><issn>0004-6337</issn><eissn>1521-3994</eissn><abstract>3D MHD global solar simulations coupling the turbulent convective zone and the radiative zone have been carried out. Essential features of the Sun such as differential rotation, meridional circulation and internal waves excitation are recovered. These realistic models are used to test the possibility of having the solar tachocline confined by a primordial inner magnetic field. We find that the initially confined magnetic fields we consider open into the convective envelope. Angular momentum is transported across the two zones by magnetic torques and stresses, establishing the so‐called Ferarro's law of isorotation. In the parameter space studied, the confinement of the magnetic field by meridional circulation penetration fails, also implying the failure of the tachocline confinement by the magnetic field. Three‐dimensional convective motions are proven responsible for the lack of magnetic field confinement. Those results are robust for the different magnetic field topologies considered, i.e. aligned or oblique dipole (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/asna.201111613</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6337 |
ispartof | Astronomische Nachrichten, 2011-12, Vol.332 (9-10), p.891-896 |
issn | 0004-6337 1521-3994 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_00828249v1 |
source | Wiley Online Library |
subjects | Astrophysics Circulation Confinement convection Differential rotation Dipoles Failure Magnetic fields Magnetohydrodynamics magnetohydrodynamics (MHD) Sciences of the Universe Solar and Stellar Astrophysics Sun: interior Sun: magnetic fields Sun: rotation Three dimensional |
title | Magnetic confinement of the solar tachocline: The oblique dipole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A32%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20confinement%20of%20the%20solar%20tachocline:%20The%20oblique%20dipole&rft.jtitle=Astronomische%20Nachrichten&rft.au=Strugarek,%20A.&rft.date=2011-12&rft.volume=332&rft.issue=9-10&rft.spage=891&rft.epage=896&rft.pages=891-896&rft.issn=0004-6337&rft.eissn=1521-3994&rft_id=info:doi/10.1002/asna.201111613&rft_dat=%3Cproquest_hal_p%3E1559698991%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554313934&rft_id=info:pmid/&rfr_iscdi=true |