Automated software defect detection and identification in vehicular embedded systems

Trends in the automotive industry confirm that the demand for testing of embedded systems, especially advanced driver assistance systems (ADAS), will grow dramatically in the near future. This paper proposes a new solution that automates the detection of software defects in embedded systems. The sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Foss, Kyle Powers, Couckuyt, Ivo, Baruta, Adrian, Mossoux, Corentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Trends in the automotive industry confirm that the demand for testing of embedded systems, especially advanced driver assistance systems (ADAS), will grow dramatically in the near future. This paper proposes a new solution that automates the detection of software defects in embedded systems. The solution consists of a data-driven sampling algorithm to intelligently sample the testing space by sequentially generating test cases. Moreover, it segregates different defects from each other and identifies the signals that trigger each. The results are compared against other automated methods for defect identification and analysis, and it is found that this novel solution is able to identify defects more rapidly. In addition, it correctly separates defects and reliably' reproduces each distinct defect.
ISSN:1524-9050
1558-0016