Validation of a computationally efficient time-domain numerical tool against DeepCwind experimental data

This paper presents the algorithm of a computationally efficient and reliable time-domain numerical tool capable of modelling floating wind turbine (FWT) platforms subjected to waves loads. Validation is performed against the experimental data of the DeepCwind semi-submersible. The platform's r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pribadi, Ajie Brama Krishna, Verao Fernandez, Gael, Martínez-Estévez, I, Donatini, Luca, Lataire, Evert
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pribadi, Ajie Brama Krishna
Verao Fernandez, Gael
Martínez-Estévez, I
Donatini, Luca
Lataire, Evert
description This paper presents the algorithm of a computationally efficient and reliable time-domain numerical tool capable of modelling floating wind turbine (FWT) platforms subjected to waves loads. Validation is performed against the experimental data of the DeepCwind semi-submersible. The platform's responses are modelled according to the Cummins’ equation of motion using frequency-domain hydrodynamic coefficients. Convolution integral of the impulse response functions for radiation forces is modelled using the recursive approach. The Morison equation is implemented to account for the drift force and viscous damping induced by the large heave plate. Mooring lines are modelled according to the lumped mass approach using an adapted version of the open source code MoorDyn. Modifications are done to model the hydrodynamic forces in the mooring lines subjected to waves and currents. A comparison is performed against DualSPHysics externally coupled with the MoorDyn+. This work is a foundation to further develop an FWT design optimization tool.
format Conference Proceeding
fullrecord <record><control><sourceid>ghent_ADGLB</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8769690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8769690</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_87696903</originalsourceid><addsrcrecordid>eNqdjEsKwkAQRLNxIeod-gIBUYhmnSgeQNwOnUlP0tAzE5KOn9s7iidwVfDqVS2z_obCLSrHANEBgo1-mPULUOQF5BxbpqCg7Clvo0cOEGZPI1sU0BgFsEtwUqiJhurBoQV6DknwaZec9I_rbOFQJtr8cpXtzqdrdcm7PklGuBnJopqIbHC0Pd_JzN2nasgcD0VZlNv9X6M3vLhQcA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Validation of a computationally efficient time-domain numerical tool against DeepCwind experimental data</title><source>Ghent University Academic Bibliography</source><creator>Pribadi, Ajie Brama Krishna ; Verao Fernandez, Gael ; Martínez-Estévez, I ; Donatini, Luca ; Lataire, Evert</creator><creatorcontrib>Pribadi, Ajie Brama Krishna ; Verao Fernandez, Gael ; Martínez-Estévez, I ; Donatini, Luca ; Lataire, Evert</creatorcontrib><description>This paper presents the algorithm of a computationally efficient and reliable time-domain numerical tool capable of modelling floating wind turbine (FWT) platforms subjected to waves loads. Validation is performed against the experimental data of the DeepCwind semi-submersible. The platform's responses are modelled according to the Cummins’ equation of motion using frequency-domain hydrodynamic coefficients. Convolution integral of the impulse response functions for radiation forces is modelled using the recursive approach. The Morison equation is implemented to account for the drift force and viscous damping induced by the large heave plate. Mooring lines are modelled according to the lumped mass approach using an adapted version of the open source code MoorDyn. Modifications are done to model the hydrodynamic forces in the mooring lines subjected to waves and currents. A comparison is performed against DualSPHysics externally coupled with the MoorDyn+. This work is a foundation to further develop an FWT design optimization tool.</description><language>eng</language><publisher>CRC Press</publisher><subject>Floating wind platform ; Mooring ; Technology and Engineering ; Waves</subject><creationdate>2022</creationdate><rights>No license (in copyright) info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,315,776,4036,27837</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/1854/LU-8769690$$EView_record_in_Ghent_University$$FView_record_in_$$GGhent_University$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pribadi, Ajie Brama Krishna</creatorcontrib><creatorcontrib>Verao Fernandez, Gael</creatorcontrib><creatorcontrib>Martínez-Estévez, I</creatorcontrib><creatorcontrib>Donatini, Luca</creatorcontrib><creatorcontrib>Lataire, Evert</creatorcontrib><title>Validation of a computationally efficient time-domain numerical tool against DeepCwind experimental data</title><description>This paper presents the algorithm of a computationally efficient and reliable time-domain numerical tool capable of modelling floating wind turbine (FWT) platforms subjected to waves loads. Validation is performed against the experimental data of the DeepCwind semi-submersible. The platform's responses are modelled according to the Cummins’ equation of motion using frequency-domain hydrodynamic coefficients. Convolution integral of the impulse response functions for radiation forces is modelled using the recursive approach. The Morison equation is implemented to account for the drift force and viscous damping induced by the large heave plate. Mooring lines are modelled according to the lumped mass approach using an adapted version of the open source code MoorDyn. Modifications are done to model the hydrodynamic forces in the mooring lines subjected to waves and currents. A comparison is performed against DualSPHysics externally coupled with the MoorDyn+. This work is a foundation to further develop an FWT design optimization tool.</description><subject>Floating wind platform</subject><subject>Mooring</subject><subject>Technology and Engineering</subject><subject>Waves</subject><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdjEsKwkAQRLNxIeod-gIBUYhmnSgeQNwOnUlP0tAzE5KOn9s7iidwVfDqVS2z_obCLSrHANEBgo1-mPULUOQF5BxbpqCg7Clvo0cOEGZPI1sU0BgFsEtwUqiJhurBoQV6DknwaZec9I_rbOFQJtr8cpXtzqdrdcm7PklGuBnJopqIbHC0Pd_JzN2nasgcD0VZlNv9X6M3vLhQcA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Pribadi, Ajie Brama Krishna</creator><creator>Verao Fernandez, Gael</creator><creator>Martínez-Estévez, I</creator><creator>Donatini, Luca</creator><creator>Lataire, Evert</creator><general>CRC Press</general><scope>ADGLB</scope></search><sort><creationdate>2022</creationdate><title>Validation of a computationally efficient time-domain numerical tool against DeepCwind experimental data</title><author>Pribadi, Ajie Brama Krishna ; Verao Fernandez, Gael ; Martínez-Estévez, I ; Donatini, Luca ; Lataire, Evert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_87696903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Floating wind platform</topic><topic>Mooring</topic><topic>Technology and Engineering</topic><topic>Waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Pribadi, Ajie Brama Krishna</creatorcontrib><creatorcontrib>Verao Fernandez, Gael</creatorcontrib><creatorcontrib>Martínez-Estévez, I</creatorcontrib><creatorcontrib>Donatini, Luca</creatorcontrib><creatorcontrib>Lataire, Evert</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pribadi, Ajie Brama Krishna</au><au>Verao Fernandez, Gael</au><au>Martínez-Estévez, I</au><au>Donatini, Luca</au><au>Lataire, Evert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Validation of a computationally efficient time-domain numerical tool against DeepCwind experimental data</atitle><date>2022</date><risdate>2022</risdate><abstract>This paper presents the algorithm of a computationally efficient and reliable time-domain numerical tool capable of modelling floating wind turbine (FWT) platforms subjected to waves loads. Validation is performed against the experimental data of the DeepCwind semi-submersible. The platform's responses are modelled according to the Cummins’ equation of motion using frequency-domain hydrodynamic coefficients. Convolution integral of the impulse response functions for radiation forces is modelled using the recursive approach. The Morison equation is implemented to account for the drift force and viscous damping induced by the large heave plate. Mooring lines are modelled according to the lumped mass approach using an adapted version of the open source code MoorDyn. Modifications are done to model the hydrodynamic forces in the mooring lines subjected to waves and currents. A comparison is performed against DualSPHysics externally coupled with the MoorDyn+. This work is a foundation to further develop an FWT design optimization tool.</abstract><pub>CRC Press</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_8769690
source Ghent University Academic Bibliography
subjects Floating wind platform
Mooring
Technology and Engineering
Waves
title Validation of a computationally efficient time-domain numerical tool against DeepCwind experimental data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent_ADGLB&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Validation%20of%20a%20computationally%20efficient%20time-domain%20numerical%20tool%20against%20DeepCwind%20experimental%20data&rft.au=Pribadi,%20Ajie%20Brama%20Krishna&rft.date=2022&rft_id=info:doi/&rft_dat=%3Cghent_ADGLB%3Eoai_archive_ugent_be_8769690%3C/ghent_ADGLB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true