3-D deep learning-based item classification for belt conveyors targeting packaging and logistics

In this study, we apply concepts taken from the fields of Artificial Intelligence (AI) and Industry 4.0 to a belt conveyor, a key tool in the packaging and logistics industries. Specifically, we present an item classification model built for belt conveyors, helping the conveyor control system to rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Park, Homin, Kang, Byungkon, Van Messem, Arnout, De Neve, Wesley
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Park, Homin
Kang, Byungkon
Van Messem, Arnout
De Neve, Wesley
description In this study, we apply concepts taken from the fields of Artificial Intelligence (AI) and Industry 4.0 to a belt conveyor, a key tool in the packaging and logistics industries. Specifically, we present an item classification model built for belt conveyors, helping the conveyor control system to recognize items while minimizing its impact on the conveyor design and the movement of items. To that end, we followed a three-pronged approach. First, we converted a size measurement system into a 3-D shape reconstruction system by recycling a belt conveyor prototype developed in a previous study. Secondly, we transformed a scanned point cloud that varies in size, given the use of variable-length items, into a point cloud with a fixed size. Thirdly, we constructed three different end-to-end 3-D point cloud classification models, with the Dynamic Graph Convolutional Neural Network (DGCNN) model coming out on top when considering accuracy, response time, and training stability.
format Conference Proceeding
fullrecord <record><control><sourceid>ghent_ADGLB</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8721782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8721782</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_87217823</originalsourceid><addsrcrecordid>eNqdjFsKwjAQRfOh4HMPs4FCm4rVbx-4AP_jNJ3G0ZhIJgruXgVX4Nc9cDh3oMbVsqqKul6sR2oicinLUjdrPVanuthCR3QHT5gCB1e0KNQBZ7qB9SjCPVvMHAP0MUFLPoON4UmvmAQyJkf5k8Ed7RXdlzB04KNjyWxlpoY9eqH5b6dK73fHzaFwZwrZeG4Tfe5NRDaY7JmfZB7uq1oyq0ZXzUrXf0VvogpRRg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3-D deep learning-based item classification for belt conveyors targeting packaging and logistics</title><source>Ghent University Academic Bibliography</source><creator>Park, Homin ; Kang, Byungkon ; Van Messem, Arnout ; De Neve, Wesley</creator><creatorcontrib>Park, Homin ; Kang, Byungkon ; Van Messem, Arnout ; De Neve, Wesley</creatorcontrib><description>In this study, we apply concepts taken from the fields of Artificial Intelligence (AI) and Industry 4.0 to a belt conveyor, a key tool in the packaging and logistics industries. Specifically, we present an item classification model built for belt conveyors, helping the conveyor control system to recognize items while minimizing its impact on the conveyor design and the movement of items. To that end, we followed a three-pronged approach. First, we converted a size measurement system into a 3-D shape reconstruction system by recycling a belt conveyor prototype developed in a previous study. Secondly, we transformed a scanned point cloud that varies in size, given the use of variable-length items, into a point cloud with a fixed size. Thirdly, we constructed three different end-to-end 3-D point cloud classification models, with the Dynamic Graph Convolutional Neural Network (DGCNN) model coming out on top when considering accuracy, response time, and training stability.</description><identifier>ISSN: 1611-3349</identifier><identifier>ISSN: 0302-9743</identifier><language>eng</language><publisher>Springer</publisher><subject>3-D object understanding ; Data augmentation ; Deep learning ; Industry 4.0 ; Technology and Engineering</subject><creationdate>2021</creationdate><rights>No license (in copyright) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,315,780,4048,27859</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/1854/LU-8721782$$EView_record_in_Ghent_University$$FView_record_in_$$GGhent_University$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Park, Homin</creatorcontrib><creatorcontrib>Kang, Byungkon</creatorcontrib><creatorcontrib>Van Messem, Arnout</creatorcontrib><creatorcontrib>De Neve, Wesley</creatorcontrib><title>3-D deep learning-based item classification for belt conveyors targeting packaging and logistics</title><description>In this study, we apply concepts taken from the fields of Artificial Intelligence (AI) and Industry 4.0 to a belt conveyor, a key tool in the packaging and logistics industries. Specifically, we present an item classification model built for belt conveyors, helping the conveyor control system to recognize items while minimizing its impact on the conveyor design and the movement of items. To that end, we followed a three-pronged approach. First, we converted a size measurement system into a 3-D shape reconstruction system by recycling a belt conveyor prototype developed in a previous study. Secondly, we transformed a scanned point cloud that varies in size, given the use of variable-length items, into a point cloud with a fixed size. Thirdly, we constructed three different end-to-end 3-D point cloud classification models, with the Dynamic Graph Convolutional Neural Network (DGCNN) model coming out on top when considering accuracy, response time, and training stability.</description><subject>3-D object understanding</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>Industry 4.0</subject><subject>Technology and Engineering</subject><issn>1611-3349</issn><issn>0302-9743</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdjFsKwjAQRfOh4HMPs4FCm4rVbx-4AP_jNJ3G0ZhIJgruXgVX4Nc9cDh3oMbVsqqKul6sR2oicinLUjdrPVanuthCR3QHT5gCB1e0KNQBZ7qB9SjCPVvMHAP0MUFLPoON4UmvmAQyJkf5k8Ed7RXdlzB04KNjyWxlpoY9eqH5b6dK73fHzaFwZwrZeG4Tfe5NRDaY7JmfZB7uq1oyq0ZXzUrXf0VvogpRRg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Park, Homin</creator><creator>Kang, Byungkon</creator><creator>Van Messem, Arnout</creator><creator>De Neve, Wesley</creator><general>Springer</general><scope>ADGLB</scope></search><sort><creationdate>2021</creationdate><title>3-D deep learning-based item classification for belt conveyors targeting packaging and logistics</title><author>Park, Homin ; Kang, Byungkon ; Van Messem, Arnout ; De Neve, Wesley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_87217823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D object understanding</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>Industry 4.0</topic><topic>Technology and Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Homin</creatorcontrib><creatorcontrib>Kang, Byungkon</creatorcontrib><creatorcontrib>Van Messem, Arnout</creatorcontrib><creatorcontrib>De Neve, Wesley</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Homin</au><au>Kang, Byungkon</au><au>Van Messem, Arnout</au><au>De Neve, Wesley</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3-D deep learning-based item classification for belt conveyors targeting packaging and logistics</atitle><date>2021</date><risdate>2021</risdate><issn>1611-3349</issn><issn>0302-9743</issn><abstract>In this study, we apply concepts taken from the fields of Artificial Intelligence (AI) and Industry 4.0 to a belt conveyor, a key tool in the packaging and logistics industries. Specifically, we present an item classification model built for belt conveyors, helping the conveyor control system to recognize items while minimizing its impact on the conveyor design and the movement of items. To that end, we followed a three-pronged approach. First, we converted a size measurement system into a 3-D shape reconstruction system by recycling a belt conveyor prototype developed in a previous study. Secondly, we transformed a scanned point cloud that varies in size, given the use of variable-length items, into a point cloud with a fixed size. Thirdly, we constructed three different end-to-end 3-D point cloud classification models, with the Dynamic Graph Convolutional Neural Network (DGCNN) model coming out on top when considering accuracy, response time, and training stability.</abstract><pub>Springer</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1611-3349
ispartof
issn 1611-3349
0302-9743
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_8721782
source Ghent University Academic Bibliography
subjects 3-D object understanding
Data augmentation
Deep learning
Industry 4.0
Technology and Engineering
title 3-D deep learning-based item classification for belt conveyors targeting packaging and logistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent_ADGLB&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3-D%20deep%20learning-based%20item%20classification%20for%20belt%20conveyors%20targeting%20packaging%20and%20logistics&rft.au=Park,%20Homin&rft.date=2021&rft.issn=1611-3349&rft_id=info:doi/&rft_dat=%3Cghent_ADGLB%3Eoai_archive_ugent_be_8721782%3C/ghent_ADGLB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true