Data processing workflow for large-scale immune monitoring studies by mass cytometry

Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rybakowska, Paulina, Van Gassen, Sofie, Quintelier, Katrien, Saeys, Yvan, Alarcón-Riquelme, Marta E, Marañón, Concepción
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rybakowska, Paulina
Van Gassen, Sofie
Quintelier, Katrien
Saeys, Yvan
Alarcón-Riquelme, Marta E
Marañón, Concepción
description Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corrected or removed from the data. Here we present a data processing pipeline which ensures the minimization of experimental artifacts and batch effects, while improving data quality. Data preprocessing and quality controls are carried out using an R pipeline and packages like CATALYST for bead-normalization and debarcoding, flowAI and flowCut for signal anomaly cleaning, AOF for files quality control, flowClean and flowDensity for gating, CytoNorm for batch normalization and FlowSOM and UMAP for data exploration. As proper experimental design is key in obtaining good quality events, we also include the sample processing protocol used to generate the data. Both, analysis and experimental pipelines are easy to scale-up, thus the workflow presented here is particularly suitable for large-scale, multicenter, multibatch and retrospective studies.
format Article
fullrecord <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8714027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8714027</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_87140273</originalsourceid><addsrcrecordid>eNqdi00KwjAQhYMoKOod5gKFtBWra3_wAO7DNE7baNJIJrX09lpw4dq3eR-8703EIpMyTWReyOkPz8Wa-S4_2aXbfS4X4nrEiPAMXhOzaWvofXhU1vdQ-QAWQ00Ja7QExrmuJXC-NdGHUeXY3QwxlAM4ZAY9RO8ohmElZhVapvW3lyI7n66HS1I31EZlTRlIY1QejcKgG_Mi1dXjVJLaFelGZkX-1-kNhMxP6w</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data processing workflow for large-scale immune monitoring studies by mass cytometry</title><source>Ghent University Academic Bibliography</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rybakowska, Paulina ; Van Gassen, Sofie ; Quintelier, Katrien ; Saeys, Yvan ; Alarcón-Riquelme, Marta E ; Marañón, Concepción</creator><creatorcontrib>Rybakowska, Paulina ; Van Gassen, Sofie ; Quintelier, Katrien ; Saeys, Yvan ; Alarcón-Riquelme, Marta E ; Marañón, Concepción</creatorcontrib><description>Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corrected or removed from the data. Here we present a data processing pipeline which ensures the minimization of experimental artifacts and batch effects, while improving data quality. Data preprocessing and quality controls are carried out using an R pipeline and packages like CATALYST for bead-normalization and debarcoding, flowAI and flowCut for signal anomaly cleaning, AOF for files quality control, flowClean and flowDensity for gating, CytoNorm for batch normalization and FlowSOM and UMAP for data exploration. As proper experimental design is key in obtaining good quality events, we also include the sample processing protocol used to generate the data. Both, analysis and experimental pipelines are easy to scale-up, thus the workflow presented here is particularly suitable for large-scale, multicenter, multibatch and retrospective studies.</description><identifier>ISSN: 2001-0370</identifier><identifier>EISSN: 2001-0370</identifier><language>eng</language><subject>Biology and Life Sciences ; CELLS ; Data normalization ; FLOW ; Immune phenotyping ; Mass cytometry ; Medicine and Health Sciences ; QUALITY ; Quality control ; Semi-automated data preprocessing ; Technology and Engineering ; VISUALIZATION</subject><creationdate>2021</creationdate><rights>Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License (CC BY-NC-ND 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>Rybakowska, Paulina</creatorcontrib><creatorcontrib>Van Gassen, Sofie</creatorcontrib><creatorcontrib>Quintelier, Katrien</creatorcontrib><creatorcontrib>Saeys, Yvan</creatorcontrib><creatorcontrib>Alarcón-Riquelme, Marta E</creatorcontrib><creatorcontrib>Marañón, Concepción</creatorcontrib><title>Data processing workflow for large-scale immune monitoring studies by mass cytometry</title><description>Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corrected or removed from the data. Here we present a data processing pipeline which ensures the minimization of experimental artifacts and batch effects, while improving data quality. Data preprocessing and quality controls are carried out using an R pipeline and packages like CATALYST for bead-normalization and debarcoding, flowAI and flowCut for signal anomaly cleaning, AOF for files quality control, flowClean and flowDensity for gating, CytoNorm for batch normalization and FlowSOM and UMAP for data exploration. As proper experimental design is key in obtaining good quality events, we also include the sample processing protocol used to generate the data. Both, analysis and experimental pipelines are easy to scale-up, thus the workflow presented here is particularly suitable for large-scale, multicenter, multibatch and retrospective studies.</description><subject>Biology and Life Sciences</subject><subject>CELLS</subject><subject>Data normalization</subject><subject>FLOW</subject><subject>Immune phenotyping</subject><subject>Mass cytometry</subject><subject>Medicine and Health Sciences</subject><subject>QUALITY</subject><subject>Quality control</subject><subject>Semi-automated data preprocessing</subject><subject>Technology and Engineering</subject><subject>VISUALIZATION</subject><issn>2001-0370</issn><issn>2001-0370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdi00KwjAQhYMoKOod5gKFtBWra3_wAO7DNE7baNJIJrX09lpw4dq3eR-8703EIpMyTWReyOkPz8Wa-S4_2aXbfS4X4nrEiPAMXhOzaWvofXhU1vdQ-QAWQ00Ja7QExrmuJXC-NdGHUeXY3QwxlAM4ZAY9RO8ohmElZhVapvW3lyI7n66HS1I31EZlTRlIY1QejcKgG_Mi1dXjVJLaFelGZkX-1-kNhMxP6w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rybakowska, Paulina</creator><creator>Van Gassen, Sofie</creator><creator>Quintelier, Katrien</creator><creator>Saeys, Yvan</creator><creator>Alarcón-Riquelme, Marta E</creator><creator>Marañón, Concepción</creator><scope>ADGLB</scope></search><sort><creationdate>2021</creationdate><title>Data processing workflow for large-scale immune monitoring studies by mass cytometry</title><author>Rybakowska, Paulina ; Van Gassen, Sofie ; Quintelier, Katrien ; Saeys, Yvan ; Alarcón-Riquelme, Marta E ; Marañón, Concepción</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_87140273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>CELLS</topic><topic>Data normalization</topic><topic>FLOW</topic><topic>Immune phenotyping</topic><topic>Mass cytometry</topic><topic>Medicine and Health Sciences</topic><topic>QUALITY</topic><topic>Quality control</topic><topic>Semi-automated data preprocessing</topic><topic>Technology and Engineering</topic><topic>VISUALIZATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rybakowska, Paulina</creatorcontrib><creatorcontrib>Van Gassen, Sofie</creatorcontrib><creatorcontrib>Quintelier, Katrien</creatorcontrib><creatorcontrib>Saeys, Yvan</creatorcontrib><creatorcontrib>Alarcón-Riquelme, Marta E</creatorcontrib><creatorcontrib>Marañón, Concepción</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rybakowska, Paulina</au><au>Van Gassen, Sofie</au><au>Quintelier, Katrien</au><au>Saeys, Yvan</au><au>Alarcón-Riquelme, Marta E</au><au>Marañón, Concepción</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data processing workflow for large-scale immune monitoring studies by mass cytometry</atitle><date>2021</date><risdate>2021</risdate><issn>2001-0370</issn><eissn>2001-0370</eissn><abstract>Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corrected or removed from the data. Here we present a data processing pipeline which ensures the minimization of experimental artifacts and batch effects, while improving data quality. Data preprocessing and quality controls are carried out using an R pipeline and packages like CATALYST for bead-normalization and debarcoding, flowAI and flowCut for signal anomaly cleaning, AOF for files quality control, flowClean and flowDensity for gating, CytoNorm for batch normalization and FlowSOM and UMAP for data exploration. As proper experimental design is key in obtaining good quality events, we also include the sample processing protocol used to generate the data. Both, analysis and experimental pipelines are easy to scale-up, thus the workflow presented here is particularly suitable for large-scale, multicenter, multibatch and retrospective studies.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2001-0370
ispartof
issn 2001-0370
2001-0370
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_8714027
source Ghent University Academic Bibliography; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Biology and Life Sciences
CELLS
Data normalization
FLOW
Immune phenotyping
Mass cytometry
Medicine and Health Sciences
QUALITY
Quality control
Semi-automated data preprocessing
Technology and Engineering
VISUALIZATION
title Data processing workflow for large-scale immune monitoring studies by mass cytometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20processing%20workflow%20for%20large-scale%20immune%20monitoring%20studies%20by%20mass%20cytometry&rft.au=Rybakowska,%20Paulina&rft.date=2021&rft.issn=2001-0370&rft.eissn=2001-0370&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_8714027%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true