On exceptional Lie geometries
Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | De Schepper, Anneleen Schillewaert, Jeroen Van Maldeghem, Hendrik Victoor, Magali |
description | Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations. |
format | Article |
fullrecord | <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8690401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8690401</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_86904013</originalsourceid><addsrcrecordid>eNpjYuA0MjA10DU1sDRhQWJzMPAWF2cZGBgYGhqZm5qbczLI-ucppFYkpxaUZObnJeYo-GSmKqSn5uemlhRlphbzMLCmJeYUp_JCaW4GIzfXEGcP3fSM1LyS-JzMpKLU5MSS-PzEzPjEouSMzLLU-NJ0kFRSaryFmaWBiYGhMVmaABUhOoo</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On exceptional Lie geometries</title><source>Ghent University Academic Bibliography</source><source>Cambridge Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Schepper, Anneleen ; Schillewaert, Jeroen ; Van Maldeghem, Hendrik ; Victoor, Magali</creator><creatorcontrib>De Schepper, Anneleen ; Schillewaert, Jeroen ; Van Maldeghem, Hendrik ; Victoor, Magali</creatorcontrib><description>Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><language>eng</language><subject>2020 Mathematics Subject Classification: Primary – 51E24 ; 20E42 ; Mathematics and Statistics ; Secondary – 51B25</subject><creationdate>2021</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>De Schepper, Anneleen</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><creatorcontrib>Van Maldeghem, Hendrik</creatorcontrib><creatorcontrib>Victoor, Magali</creatorcontrib><title>On exceptional Lie geometries</title><description>Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.</description><subject>2020 Mathematics Subject Classification: Primary – 51E24</subject><subject>20E42</subject><subject>Mathematics and Statistics</subject><subject>Secondary – 51B25</subject><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNpjYuA0MjA10DU1sDRhQWJzMPAWF2cZGBgYGhqZm5qbczLI-ucppFYkpxaUZObnJeYo-GSmKqSn5uemlhRlphbzMLCmJeYUp_JCaW4GIzfXEGcP3fSM1LyS-JzMpKLU5MSS-PzEzPjEouSMzLLU-NJ0kFRSaryFmaWBiYGhMVmaABUhOoo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>De Schepper, Anneleen</creator><creator>Schillewaert, Jeroen</creator><creator>Van Maldeghem, Hendrik</creator><creator>Victoor, Magali</creator><scope>ADGLB</scope></search><sort><creationdate>2021</creationdate><title>On exceptional Lie geometries</title><author>De Schepper, Anneleen ; Schillewaert, Jeroen ; Van Maldeghem, Hendrik ; Victoor, Magali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_86904013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2020 Mathematics Subject Classification: Primary – 51E24</topic><topic>20E42</topic><topic>Mathematics and Statistics</topic><topic>Secondary – 51B25</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Schepper, Anneleen</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><creatorcontrib>Van Maldeghem, Hendrik</creatorcontrib><creatorcontrib>Victoor, Magali</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Schepper, Anneleen</au><au>Schillewaert, Jeroen</au><au>Van Maldeghem, Hendrik</au><au>Victoor, Magali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On exceptional Lie geometries</atitle><date>2021</date><risdate>2021</risdate><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-5094 |
ispartof | |
issn | 2050-5094 2050-5094 |
language | eng |
recordid | cdi_ghent_librecat_oai_archive_ugent_be_8690401 |
source | Ghent University Academic Bibliography; Cambridge Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 2020 Mathematics Subject Classification: Primary – 51E24 20E42 Mathematics and Statistics Secondary – 51B25 |
title | On exceptional Lie geometries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20exceptional%20Lie%20geometries&rft.au=De%20Schepper,%20Anneleen&rft.date=2021&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_8690401%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |