On exceptional Lie geometries

Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: De Schepper, Anneleen, Schillewaert, Jeroen, Van Maldeghem, Hendrik, Victoor, Magali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator De Schepper, Anneleen
Schillewaert, Jeroen
Van Maldeghem, Hendrik
Victoor, Magali
description Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.
format Article
fullrecord <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8690401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8690401</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_86904013</originalsourceid><addsrcrecordid>eNpjYuA0MjA10DU1sDRhQWJzMPAWF2cZGBgYGhqZm5qbczLI-ucppFYkpxaUZObnJeYo-GSmKqSn5uemlhRlphbzMLCmJeYUp_JCaW4GIzfXEGcP3fSM1LyS-JzMpKLU5MSS-PzEzPjEouSMzLLU-NJ0kFRSaryFmaWBiYGhMVmaABUhOoo</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On exceptional Lie geometries</title><source>Ghent University Academic Bibliography</source><source>Cambridge Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>De Schepper, Anneleen ; Schillewaert, Jeroen ; Van Maldeghem, Hendrik ; Victoor, Magali</creator><creatorcontrib>De Schepper, Anneleen ; Schillewaert, Jeroen ; Van Maldeghem, Hendrik ; Victoor, Magali</creatorcontrib><description>Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.</description><identifier>ISSN: 2050-5094</identifier><identifier>EISSN: 2050-5094</identifier><language>eng</language><subject>2020 Mathematics Subject Classification: Primary – 51E24 ; 20E42 ; Mathematics and Statistics ; Secondary – 51B25</subject><creationdate>2021</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>De Schepper, Anneleen</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><creatorcontrib>Van Maldeghem, Hendrik</creatorcontrib><creatorcontrib>Victoor, Magali</creatorcontrib><title>On exceptional Lie geometries</title><description>Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.</description><subject>2020 Mathematics Subject Classification: Primary – 51E24</subject><subject>20E42</subject><subject>Mathematics and Statistics</subject><subject>Secondary – 51B25</subject><issn>2050-5094</issn><issn>2050-5094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNpjYuA0MjA10DU1sDRhQWJzMPAWF2cZGBgYGhqZm5qbczLI-ucppFYkpxaUZObnJeYo-GSmKqSn5uemlhRlphbzMLCmJeYUp_JCaW4GIzfXEGcP3fSM1LyS-JzMpKLU5MSS-PzEzPjEouSMzLLU-NJ0kFRSaryFmaWBiYGhMVmaABUhOoo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>De Schepper, Anneleen</creator><creator>Schillewaert, Jeroen</creator><creator>Van Maldeghem, Hendrik</creator><creator>Victoor, Magali</creator><scope>ADGLB</scope></search><sort><creationdate>2021</creationdate><title>On exceptional Lie geometries</title><author>De Schepper, Anneleen ; Schillewaert, Jeroen ; Van Maldeghem, Hendrik ; Victoor, Magali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_86904013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2020 Mathematics Subject Classification: Primary – 51E24</topic><topic>20E42</topic><topic>Mathematics and Statistics</topic><topic>Secondary – 51B25</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Schepper, Anneleen</creatorcontrib><creatorcontrib>Schillewaert, Jeroen</creatorcontrib><creatorcontrib>Van Maldeghem, Hendrik</creatorcontrib><creatorcontrib>Victoor, Magali</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Schepper, Anneleen</au><au>Schillewaert, Jeroen</au><au>Van Maldeghem, Hendrik</au><au>Victoor, Magali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On exceptional Lie geometries</atitle><date>2021</date><risdate>2021</risdate><issn>2050-5094</issn><eissn>2050-5094</eissn><abstract>Parapolar spaces are point-line geometries introduced as a geometric approach to (exceptional) algebraic groups. We characterize a wide class of Lie geometries as parapolar spaces satisfying a simple intersection property. In particular, many of the exceptional Lie incidence geometries occur. In an appendix, we extend our result to the locally disconnected case and discuss the locally disconnected case of some other well-known characterizations.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-5094
ispartof
issn 2050-5094
2050-5094
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_8690401
source Ghent University Academic Bibliography; Cambridge Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 2020 Mathematics Subject Classification: Primary – 51E24
20E42
Mathematics and Statistics
Secondary – 51B25
title On exceptional Lie geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20exceptional%20Lie%20geometries&rft.au=De%20Schepper,%20Anneleen&rft.date=2021&rft.issn=2050-5094&rft.eissn=2050-5094&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_8690401%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true