Wheat yield estimation from NDVI and regional climate models in Latvia

Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vannoppen, Astrid, Gobin, Anne, Kotova, Lola, Top, Sara, De Cruz, Lesley, Vīksna, Andris, Aniskevich, Svetlana, Bobylev, Leonid, Buntemeyer, Lars, Caluwaerts, Steven, De Troch, Rozemien, Gnatiuk, Natalia, Hamdi, Rafiq, Reca Remedio, Armelle, Sakalli, Abdulla, Van De Vyver, Hans, Van Schaeybroeck, Bert, Termonia, Piet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vannoppen, Astrid
Gobin, Anne
Kotova, Lola
Top, Sara
De Cruz, Lesley
Vīksna, Andris
Aniskevich, Svetlana
Bobylev, Leonid
Buntemeyer, Lars
Caluwaerts, Steven
De Troch, Rozemien
Gnatiuk, Natalia
Hamdi, Rafiq
Reca Remedio, Armelle
Sakalli, Abdulla
Van De Vyver, Hans
Van Schaeybroeck, Bert
Termonia, Piet
description Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution and could give more insight into crop yield. In this paper, we (i) evaluate the possibility to use Normalized Difference Vegetation Index (NDVI) time series to estimate wheat yield in Latvia and (ii) determine which weather variables impact wheat yield changes using both ALARO-0 and REMO Regional Climate Models (RCM) output. The integral from NDVI series (aNDVI) for winter and spring wheat fields is used as a predictor to model regional wheat yield from 2014 to 2018. A correlation analysis between weather variables, wheat yield and aNDVI was used to elucidate which weather variables impact wheat yield changes in Latvia. Our results indicate that high temperatures in June for spring wheat and in July for winter wheat had a negative correlation with yield. A linear regression yield model explained 71% of the variability with a residual standard error of 0.55 Mg/ha. When RCM data were added as predictor variables to the wheat yield empirical model a random forest approach resulted in better results compared to a linear regression approach, the explained variance increased up to 97% and the residual standard error decreased to 0.17 Mg/ha. We conclude that NDVI time series and RCM output enabled regional crop yield and weather impact monitoring at higher spatio-temporal resolutions than regional statistics.
format Article
fullrecord <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8670277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8670277</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_86702773</originalsourceid><addsrcrecordid>eNqdi8EKgkAYhJcoSMp3-F9A2FbJPFdSEJ2ijsuv_urGusLuJvT2KXTo3Fxm-GZmxgLBUxElIhPzn7xkoXNPPiqONxlPApY_WkIPb0W6AnJedehVb6C2fQfXw_0MaCqw1IwQNZR6GhB0fUXagTJwQT8oXLNFjdpR-PUVE_nxtj9FTUvGS60KSyV62aOSaMtWDSRfzVQVJHfblIs0jf86fQA0jUlL</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wheat yield estimation from NDVI and regional climate models in Latvia</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Ghent University Academic Bibliography</source><creator>Vannoppen, Astrid ; Gobin, Anne ; Kotova, Lola ; Top, Sara ; De Cruz, Lesley ; Vīksna, Andris ; Aniskevich, Svetlana ; Bobylev, Leonid ; Buntemeyer, Lars ; Caluwaerts, Steven ; De Troch, Rozemien ; Gnatiuk, Natalia ; Hamdi, Rafiq ; Reca Remedio, Armelle ; Sakalli, Abdulla ; Van De Vyver, Hans ; Van Schaeybroeck, Bert ; Termonia, Piet</creator><creatorcontrib>Vannoppen, Astrid ; Gobin, Anne ; Kotova, Lola ; Top, Sara ; De Cruz, Lesley ; Vīksna, Andris ; Aniskevich, Svetlana ; Bobylev, Leonid ; Buntemeyer, Lars ; Caluwaerts, Steven ; De Troch, Rozemien ; Gnatiuk, Natalia ; Hamdi, Rafiq ; Reca Remedio, Armelle ; Sakalli, Abdulla ; Van De Vyver, Hans ; Van Schaeybroeck, Bert ; Termonia, Piet</creatorcontrib><description>Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution and could give more insight into crop yield. In this paper, we (i) evaluate the possibility to use Normalized Difference Vegetation Index (NDVI) time series to estimate wheat yield in Latvia and (ii) determine which weather variables impact wheat yield changes using both ALARO-0 and REMO Regional Climate Models (RCM) output. The integral from NDVI series (aNDVI) for winter and spring wheat fields is used as a predictor to model regional wheat yield from 2014 to 2018. A correlation analysis between weather variables, wheat yield and aNDVI was used to elucidate which weather variables impact wheat yield changes in Latvia. Our results indicate that high temperatures in June for spring wheat and in July for winter wheat had a negative correlation with yield. A linear regression yield model explained 71% of the variability with a residual standard error of 0.55 Mg/ha. When RCM data were added as predictor variables to the wheat yield empirical model a random forest approach resulted in better results compared to a linear regression approach, the explained variance increased up to 97% and the residual standard error decreased to 0.17 Mg/ha. We conclude that NDVI time series and RCM output enabled regional crop yield and weather impact monitoring at higher spatio-temporal resolutions than regional statistics.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><language>eng</language><subject>ALARO-0 ; Earth and Environmental Sciences ; EUROPEAN WHEAT ; General Earth and Planetary Sciences ; Latvia ; NDVI ; PREDICTION ; PROBA-V ; regional climate model ; REMO ; spring wheat ; STRESS ; TEMPERATURE ; VALIDATION ; VEGETATION ; weather impact ; winter wheat ; yield estimation</subject><creationdate>2020</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4024,27860</link.rule.ids></links><search><creatorcontrib>Vannoppen, Astrid</creatorcontrib><creatorcontrib>Gobin, Anne</creatorcontrib><creatorcontrib>Kotova, Lola</creatorcontrib><creatorcontrib>Top, Sara</creatorcontrib><creatorcontrib>De Cruz, Lesley</creatorcontrib><creatorcontrib>Vīksna, Andris</creatorcontrib><creatorcontrib>Aniskevich, Svetlana</creatorcontrib><creatorcontrib>Bobylev, Leonid</creatorcontrib><creatorcontrib>Buntemeyer, Lars</creatorcontrib><creatorcontrib>Caluwaerts, Steven</creatorcontrib><creatorcontrib>De Troch, Rozemien</creatorcontrib><creatorcontrib>Gnatiuk, Natalia</creatorcontrib><creatorcontrib>Hamdi, Rafiq</creatorcontrib><creatorcontrib>Reca Remedio, Armelle</creatorcontrib><creatorcontrib>Sakalli, Abdulla</creatorcontrib><creatorcontrib>Van De Vyver, Hans</creatorcontrib><creatorcontrib>Van Schaeybroeck, Bert</creatorcontrib><creatorcontrib>Termonia, Piet</creatorcontrib><title>Wheat yield estimation from NDVI and regional climate models in Latvia</title><description>Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution and could give more insight into crop yield. In this paper, we (i) evaluate the possibility to use Normalized Difference Vegetation Index (NDVI) time series to estimate wheat yield in Latvia and (ii) determine which weather variables impact wheat yield changes using both ALARO-0 and REMO Regional Climate Models (RCM) output. The integral from NDVI series (aNDVI) for winter and spring wheat fields is used as a predictor to model regional wheat yield from 2014 to 2018. A correlation analysis between weather variables, wheat yield and aNDVI was used to elucidate which weather variables impact wheat yield changes in Latvia. Our results indicate that high temperatures in June for spring wheat and in July for winter wheat had a negative correlation with yield. A linear regression yield model explained 71% of the variability with a residual standard error of 0.55 Mg/ha. When RCM data were added as predictor variables to the wheat yield empirical model a random forest approach resulted in better results compared to a linear regression approach, the explained variance increased up to 97% and the residual standard error decreased to 0.17 Mg/ha. We conclude that NDVI time series and RCM output enabled regional crop yield and weather impact monitoring at higher spatio-temporal resolutions than regional statistics.</description><subject>ALARO-0</subject><subject>Earth and Environmental Sciences</subject><subject>EUROPEAN WHEAT</subject><subject>General Earth and Planetary Sciences</subject><subject>Latvia</subject><subject>NDVI</subject><subject>PREDICTION</subject><subject>PROBA-V</subject><subject>regional climate model</subject><subject>REMO</subject><subject>spring wheat</subject><subject>STRESS</subject><subject>TEMPERATURE</subject><subject>VALIDATION</subject><subject>VEGETATION</subject><subject>weather impact</subject><subject>winter wheat</subject><subject>yield estimation</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdi8EKgkAYhJcoSMp3-F9A2FbJPFdSEJ2ijsuv_urGusLuJvT2KXTo3Fxm-GZmxgLBUxElIhPzn7xkoXNPPiqONxlPApY_WkIPb0W6AnJedehVb6C2fQfXw_0MaCqw1IwQNZR6GhB0fUXagTJwQT8oXLNFjdpR-PUVE_nxtj9FTUvGS60KSyV62aOSaMtWDSRfzVQVJHfblIs0jf86fQA0jUlL</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Vannoppen, Astrid</creator><creator>Gobin, Anne</creator><creator>Kotova, Lola</creator><creator>Top, Sara</creator><creator>De Cruz, Lesley</creator><creator>Vīksna, Andris</creator><creator>Aniskevich, Svetlana</creator><creator>Bobylev, Leonid</creator><creator>Buntemeyer, Lars</creator><creator>Caluwaerts, Steven</creator><creator>De Troch, Rozemien</creator><creator>Gnatiuk, Natalia</creator><creator>Hamdi, Rafiq</creator><creator>Reca Remedio, Armelle</creator><creator>Sakalli, Abdulla</creator><creator>Van De Vyver, Hans</creator><creator>Van Schaeybroeck, Bert</creator><creator>Termonia, Piet</creator><scope>ADGLB</scope></search><sort><creationdate>2020</creationdate><title>Wheat yield estimation from NDVI and regional climate models in Latvia</title><author>Vannoppen, Astrid ; Gobin, Anne ; Kotova, Lola ; Top, Sara ; De Cruz, Lesley ; Vīksna, Andris ; Aniskevich, Svetlana ; Bobylev, Leonid ; Buntemeyer, Lars ; Caluwaerts, Steven ; De Troch, Rozemien ; Gnatiuk, Natalia ; Hamdi, Rafiq ; Reca Remedio, Armelle ; Sakalli, Abdulla ; Van De Vyver, Hans ; Van Schaeybroeck, Bert ; Termonia, Piet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_86702773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ALARO-0</topic><topic>Earth and Environmental Sciences</topic><topic>EUROPEAN WHEAT</topic><topic>General Earth and Planetary Sciences</topic><topic>Latvia</topic><topic>NDVI</topic><topic>PREDICTION</topic><topic>PROBA-V</topic><topic>regional climate model</topic><topic>REMO</topic><topic>spring wheat</topic><topic>STRESS</topic><topic>TEMPERATURE</topic><topic>VALIDATION</topic><topic>VEGETATION</topic><topic>weather impact</topic><topic>winter wheat</topic><topic>yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vannoppen, Astrid</creatorcontrib><creatorcontrib>Gobin, Anne</creatorcontrib><creatorcontrib>Kotova, Lola</creatorcontrib><creatorcontrib>Top, Sara</creatorcontrib><creatorcontrib>De Cruz, Lesley</creatorcontrib><creatorcontrib>Vīksna, Andris</creatorcontrib><creatorcontrib>Aniskevich, Svetlana</creatorcontrib><creatorcontrib>Bobylev, Leonid</creatorcontrib><creatorcontrib>Buntemeyer, Lars</creatorcontrib><creatorcontrib>Caluwaerts, Steven</creatorcontrib><creatorcontrib>De Troch, Rozemien</creatorcontrib><creatorcontrib>Gnatiuk, Natalia</creatorcontrib><creatorcontrib>Hamdi, Rafiq</creatorcontrib><creatorcontrib>Reca Remedio, Armelle</creatorcontrib><creatorcontrib>Sakalli, Abdulla</creatorcontrib><creatorcontrib>Van De Vyver, Hans</creatorcontrib><creatorcontrib>Van Schaeybroeck, Bert</creatorcontrib><creatorcontrib>Termonia, Piet</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vannoppen, Astrid</au><au>Gobin, Anne</au><au>Kotova, Lola</au><au>Top, Sara</au><au>De Cruz, Lesley</au><au>Vīksna, Andris</au><au>Aniskevich, Svetlana</au><au>Bobylev, Leonid</au><au>Buntemeyer, Lars</au><au>Caluwaerts, Steven</au><au>De Troch, Rozemien</au><au>Gnatiuk, Natalia</au><au>Hamdi, Rafiq</au><au>Reca Remedio, Armelle</au><au>Sakalli, Abdulla</au><au>Van De Vyver, Hans</au><au>Van Schaeybroeck, Bert</au><au>Termonia, Piet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wheat yield estimation from NDVI and regional climate models in Latvia</atitle><date>2020</date><risdate>2020</risdate><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Wheat yield variability will increase in the future due to the projected increase in extreme weather events and long-term climate change effects. Currently, regional agricultural statistics are used to monitor wheat yield. Remotely sensed vegetation indices have a higher spatio-temporal resolution and could give more insight into crop yield. In this paper, we (i) evaluate the possibility to use Normalized Difference Vegetation Index (NDVI) time series to estimate wheat yield in Latvia and (ii) determine which weather variables impact wheat yield changes using both ALARO-0 and REMO Regional Climate Models (RCM) output. The integral from NDVI series (aNDVI) for winter and spring wheat fields is used as a predictor to model regional wheat yield from 2014 to 2018. A correlation analysis between weather variables, wheat yield and aNDVI was used to elucidate which weather variables impact wheat yield changes in Latvia. Our results indicate that high temperatures in June for spring wheat and in July for winter wheat had a negative correlation with yield. A linear regression yield model explained 71% of the variability with a residual standard error of 0.55 Mg/ha. When RCM data were added as predictor variables to the wheat yield empirical model a random forest approach resulted in better results compared to a linear regression approach, the explained variance increased up to 97% and the residual standard error decreased to 0.17 Mg/ha. We conclude that NDVI time series and RCM output enabled regional crop yield and weather impact monitoring at higher spatio-temporal resolutions than regional statistics.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof
issn 2072-4292
2072-4292
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_8670277
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Ghent University Academic Bibliography
subjects ALARO-0
Earth and Environmental Sciences
EUROPEAN WHEAT
General Earth and Planetary Sciences
Latvia
NDVI
PREDICTION
PROBA-V
regional climate model
REMO
spring wheat
STRESS
TEMPERATURE
VALIDATION
VEGETATION
weather impact
winter wheat
yield estimation
title Wheat yield estimation from NDVI and regional climate models in Latvia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wheat%20yield%20estimation%20from%20NDVI%20and%20regional%20climate%20models%20in%20Latvia&rft.au=Vannoppen,%20Astrid&rft.date=2020&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_8670277%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true