The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites
We studied the effect of a multilevel presence of carbon-based reinforcements-a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))-on the fire performance, thermal condu...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Toldy, Andrea Szebenyi, Gabor Molnar, Kolos Tóth, Levente Ferenc Magyar, Balazs Hliva, Viktor Czigany, Tibor Szolnoki, Beata |
description | We studied the effect of a multilevel presence of carbon-based reinforcements-a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))-on the fire performance, thermal conductivity, and mechanical properties of reference and flame-retarded epoxy resin (EP) composites. The inclusion of carbon fibers and flame retardant reduced the peak heat release rate (pHRR) of the epoxy resins. The extent to which the nanoreinforcements reduced the pHRR depended on their influence on thermal conductivity. Specifically, high thermal conductivity is advantageous at the early stages of degradation, but after ignition it may lead to more intensive degradation and a higher pHRR; especially in the reference samples without flame retardant. The lowest pHRR (130 kW/m(2)) and self-extinguishing V-0 UL-94 rating was achieved in the flame-retarded composite containing all three levels of carbon reinforcement (EP + CNF(CNT) + CNT + CF FR). The plasticizing effect of the liquid flame retardant impaired both the tensile and flexural properties; however, it significantly enhanced the impact resistance of the epoxy resin and its composites. |
format | Article |
fullrecord | <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8621134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8621134</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_86211343</originalsourceid><addsrcrecordid>eNqdjc1KA0EQhBdRMJi8Qz9AAvvnxrsoPkDuw2ynJtsyP8vM7GLOvrgT8ODZvlRTVR91V23a-tgd-m6o7__8j9Uupc-6XP88DM1xU32fJhCMAWcKhtxis1issMQ6jsFThHgTIsPB50TFyYUwEkEzYkmc9ow9cfDnhbOskq970v5MDjxpL6wtzTGUchak2wjm8HUtgJtDkoy0rR6Mtgm7X32q2ve30-vH4TKVTWVljGCdVdCidORJVqjlcotGqJehbZqu7_4F_QDHUGGJ</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Ghent University Academic Bibliography</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Toldy, Andrea ; Szebenyi, Gabor ; Molnar, Kolos ; Tóth, Levente Ferenc ; Magyar, Balazs ; Hliva, Viktor ; Czigany, Tibor ; Szolnoki, Beata</creator><creatorcontrib>Toldy, Andrea ; Szebenyi, Gabor ; Molnar, Kolos ; Tóth, Levente Ferenc ; Magyar, Balazs ; Hliva, Viktor ; Czigany, Tibor ; Szolnoki, Beata</creatorcontrib><description>We studied the effect of a multilevel presence of carbon-based reinforcements-a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))-on the fire performance, thermal conductivity, and mechanical properties of reference and flame-retarded epoxy resin (EP) composites. The inclusion of carbon fibers and flame retardant reduced the peak heat release rate (pHRR) of the epoxy resins. The extent to which the nanoreinforcements reduced the pHRR depended on their influence on thermal conductivity. Specifically, high thermal conductivity is advantageous at the early stages of degradation, but after ignition it may lead to more intensive degradation and a higher pHRR; especially in the reference samples without flame retardant. The lowest pHRR (130 kW/m(2)) and self-extinguishing V-0 UL-94 rating was achieved in the flame-retarded composite containing all three levels of carbon reinforcement (EP + CNF(CNT) + CNT + CF FR). The plasticizing effect of the liquid flame retardant impaired both the tensile and flexural properties; however, it significantly enhanced the impact resistance of the epoxy resin and its composites.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><language>eng</language><subject>BEHAVIOR ; carbon fiber reinforced epoxy composite ; carbon nanofiber ; carbon nanotube ; Chemistry ; conductivity ; EDITORIAL CORNER ; FLAME RETARDANCY ; HIGH-THROUGHPUT ; Technology and Engineering ; thermal</subject><creationdate>2019</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4014,27851</link.rule.ids></links><search><creatorcontrib>Toldy, Andrea</creatorcontrib><creatorcontrib>Szebenyi, Gabor</creatorcontrib><creatorcontrib>Molnar, Kolos</creatorcontrib><creatorcontrib>Tóth, Levente Ferenc</creatorcontrib><creatorcontrib>Magyar, Balazs</creatorcontrib><creatorcontrib>Hliva, Viktor</creatorcontrib><creatorcontrib>Czigany, Tibor</creatorcontrib><creatorcontrib>Szolnoki, Beata</creatorcontrib><title>The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites</title><description>We studied the effect of a multilevel presence of carbon-based reinforcements-a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))-on the fire performance, thermal conductivity, and mechanical properties of reference and flame-retarded epoxy resin (EP) composites. The inclusion of carbon fibers and flame retardant reduced the peak heat release rate (pHRR) of the epoxy resins. The extent to which the nanoreinforcements reduced the pHRR depended on their influence on thermal conductivity. Specifically, high thermal conductivity is advantageous at the early stages of degradation, but after ignition it may lead to more intensive degradation and a higher pHRR; especially in the reference samples without flame retardant. The lowest pHRR (130 kW/m(2)) and self-extinguishing V-0 UL-94 rating was achieved in the flame-retarded composite containing all three levels of carbon reinforcement (EP + CNF(CNT) + CNT + CF FR). The plasticizing effect of the liquid flame retardant impaired both the tensile and flexural properties; however, it significantly enhanced the impact resistance of the epoxy resin and its composites.</description><subject>BEHAVIOR</subject><subject>carbon fiber reinforced epoxy composite</subject><subject>carbon nanofiber</subject><subject>carbon nanotube</subject><subject>Chemistry</subject><subject>conductivity</subject><subject>EDITORIAL CORNER</subject><subject>FLAME RETARDANCY</subject><subject>HIGH-THROUGHPUT</subject><subject>Technology and Engineering</subject><subject>thermal</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdjc1KA0EQhBdRMJi8Qz9AAvvnxrsoPkDuw2ynJtsyP8vM7GLOvrgT8ODZvlRTVR91V23a-tgd-m6o7__8j9Uupc-6XP88DM1xU32fJhCMAWcKhtxis1issMQ6jsFThHgTIsPB50TFyYUwEkEzYkmc9ow9cfDnhbOskq970v5MDjxpL6wtzTGUchak2wjm8HUtgJtDkoy0rR6Mtgm7X32q2ve30-vH4TKVTWVljGCdVdCidORJVqjlcotGqJehbZqu7_4F_QDHUGGJ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Toldy, Andrea</creator><creator>Szebenyi, Gabor</creator><creator>Molnar, Kolos</creator><creator>Tóth, Levente Ferenc</creator><creator>Magyar, Balazs</creator><creator>Hliva, Viktor</creator><creator>Czigany, Tibor</creator><creator>Szolnoki, Beata</creator><scope>ADGLB</scope></search><sort><creationdate>2019</creationdate><title>The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites</title><author>Toldy, Andrea ; Szebenyi, Gabor ; Molnar, Kolos ; Tóth, Levente Ferenc ; Magyar, Balazs ; Hliva, Viktor ; Czigany, Tibor ; Szolnoki, Beata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_86211343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BEHAVIOR</topic><topic>carbon fiber reinforced epoxy composite</topic><topic>carbon nanofiber</topic><topic>carbon nanotube</topic><topic>Chemistry</topic><topic>conductivity</topic><topic>EDITORIAL CORNER</topic><topic>FLAME RETARDANCY</topic><topic>HIGH-THROUGHPUT</topic><topic>Technology and Engineering</topic><topic>thermal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toldy, Andrea</creatorcontrib><creatorcontrib>Szebenyi, Gabor</creatorcontrib><creatorcontrib>Molnar, Kolos</creatorcontrib><creatorcontrib>Tóth, Levente Ferenc</creatorcontrib><creatorcontrib>Magyar, Balazs</creatorcontrib><creatorcontrib>Hliva, Viktor</creatorcontrib><creatorcontrib>Czigany, Tibor</creatorcontrib><creatorcontrib>Szolnoki, Beata</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toldy, Andrea</au><au>Szebenyi, Gabor</au><au>Molnar, Kolos</au><au>Tóth, Levente Ferenc</au><au>Magyar, Balazs</au><au>Hliva, Viktor</au><au>Czigany, Tibor</au><au>Szolnoki, Beata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites</atitle><date>2019</date><risdate>2019</risdate><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>We studied the effect of a multilevel presence of carbon-based reinforcements-a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))-on the fire performance, thermal conductivity, and mechanical properties of reference and flame-retarded epoxy resin (EP) composites. The inclusion of carbon fibers and flame retardant reduced the peak heat release rate (pHRR) of the epoxy resins. The extent to which the nanoreinforcements reduced the pHRR depended on their influence on thermal conductivity. Specifically, high thermal conductivity is advantageous at the early stages of degradation, but after ignition it may lead to more intensive degradation and a higher pHRR; especially in the reference samples without flame retardant. The lowest pHRR (130 kW/m(2)) and self-extinguishing V-0 UL-94 rating was achieved in the flame-retarded composite containing all three levels of carbon reinforcement (EP + CNF(CNT) + CNT + CF FR). The plasticizing effect of the liquid flame retardant impaired both the tensile and flexural properties; however, it significantly enhanced the impact resistance of the epoxy resin and its composites.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_ghent_librecat_oai_archive_ugent_be_8621134 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Ghent University Academic Bibliography; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | BEHAVIOR carbon fiber reinforced epoxy composite carbon nanofiber carbon nanotube Chemistry conductivity EDITORIAL CORNER FLAME RETARDANCY HIGH-THROUGHPUT Technology and Engineering thermal |
title | The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20multilevel%20carbon%20reinforcements%20on%20the%20fire%20performance,%20conductivity,%20and%20mechanical%20properties%20of%20epoxy%20composites&rft.au=Toldy,%20Andrea&rft.date=2019&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_8621134%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |