Altering gait variability with an ankle exoskeleton

Exoskeletons can influence human gait. A healthy gait is characterized by a certain amount of variability compared to a non-healthy gait that has more inherent variability; however which exoskeleton assistance parameters are necessary to avoid increasing gait variability or to potentially lower gait...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Antonellis, Prokopios, Galle, Samuel, De Clercq, Dirk, Malcolm, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Antonellis, Prokopios
Galle, Samuel
De Clercq, Dirk
Malcolm, Philippe
description Exoskeletons can influence human gait. A healthy gait is characterized by a certain amount of variability compared to a non-healthy gait that has more inherent variability; however which exoskeleton assistance parameters are necessary to avoid increasing gait variability or to potentially lower gait variability below that of unassisted walking are unknown. This study investigated the interaction effects of exoskeleton timing and power on gait variability. Ten healthy participants walked on a treadmill with bilateral ankle-foot exoskeletons under ten conditions with different timing (varied from 36% to 54% of the stride) and power (varied from 0.2 to 0.5 W∙kg-1) combinations. We used the largest Lyapunov exponent (LyE) and maximum Floquet multiplier (FM) to evaluate the stride-to-stride fluctuations of the kinematic time series. We found the lowest LyE at the ankle and a significant reduction versus powered-off with exoskeleton power (summed for both legs) of 0.45 W∙kg-1 and actuation timing at 48% of the stride cycle. At the knee, a significant positive effect of power and a negative interaction effect of power and timing were found for LyE. We found significant positive interaction effects of the square of timing and power for LyE at the knee and hip joints. In contrast, the FM at the ankle increased with increasing power and later timing. We found a significant negative effect of power and a positive interaction effect of power and timing for FM at the knee and no significant effects of any of the exoskeleton parameters for FM at the hip. The ability of the exoskeleton to reduce the LyE at the ankle joint offers new possibilities in terms of altering gait variability, which could have applications for using exoskeletons as rehabilitation devices. Further efforts could examine if it is possible to simultaneously reduce the LyE and FM at one or more lower limb joints.
format Article
fullrecord <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_8589595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_8589595</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_85895953</originalsourceid><addsrcrecordid>eNqdi00KwjAQRoMoWH_ukAsUakNKuxRRPID7MC3TZGxIIRmr3l4FF66FD96DxzcT2a5RZV6VhZr_-FKsUroWhVZ1VWVC7T1jpGClBWI5QSRoyRM_5Z3YSQjvDR4lPsY0oEcew0YsevAJt1-uRXk6Xg7n3DoMbDy1ETtgMwIZiJ2jCc3NflKLptZ1oxut_jq9AKzAQrI</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Altering gait variability with an ankle exoskeleton</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>Ghent University Academic Bibliography</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Antonellis, Prokopios ; Galle, Samuel ; De Clercq, Dirk ; Malcolm, Philippe</creator><creatorcontrib>Antonellis, Prokopios ; Galle, Samuel ; De Clercq, Dirk ; Malcolm, Philippe</creatorcontrib><description>Exoskeletons can influence human gait. A healthy gait is characterized by a certain amount of variability compared to a non-healthy gait that has more inherent variability; however which exoskeleton assistance parameters are necessary to avoid increasing gait variability or to potentially lower gait variability below that of unassisted walking are unknown. This study investigated the interaction effects of exoskeleton timing and power on gait variability. Ten healthy participants walked on a treadmill with bilateral ankle-foot exoskeletons under ten conditions with different timing (varied from 36% to 54% of the stride) and power (varied from 0.2 to 0.5 W∙kg-1) combinations. We used the largest Lyapunov exponent (LyE) and maximum Floquet multiplier (FM) to evaluate the stride-to-stride fluctuations of the kinematic time series. We found the lowest LyE at the ankle and a significant reduction versus powered-off with exoskeleton power (summed for both legs) of 0.45 W∙kg-1 and actuation timing at 48% of the stride cycle. At the knee, a significant positive effect of power and a negative interaction effect of power and timing were found for LyE. We found significant positive interaction effects of the square of timing and power for LyE at the knee and hip joints. In contrast, the FM at the ankle increased with increasing power and later timing. We found a significant negative effect of power and a positive interaction effect of power and timing for FM at the knee and no significant effects of any of the exoskeleton parameters for FM at the hip. The ability of the exoskeleton to reduce the LyE at the ankle joint offers new possibilities in terms of altering gait variability, which could have applications for using exoskeletons as rehabilitation devices. Further efforts could examine if it is possible to simultaneously reduce the LyE and FM at one or more lower limb joints.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><language>eng</language><subject>ASSISTANCE ; ATTRACTOR DIVERGENCE ; ENERGETICS ; FALL-PRONE ; KINEMATIC VARIABILITY ; LOCAL DYNAMIC STABILITY ; Medicine and Health Sciences ; METABOLIC COST ; OLDER-ADULTS ; PREDICTORS ; WALKING SPEED</subject><creationdate>2018</creationdate><rights>No license (in copyright) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4022,27859</link.rule.ids></links><search><creatorcontrib>Antonellis, Prokopios</creatorcontrib><creatorcontrib>Galle, Samuel</creatorcontrib><creatorcontrib>De Clercq, Dirk</creatorcontrib><creatorcontrib>Malcolm, Philippe</creatorcontrib><title>Altering gait variability with an ankle exoskeleton</title><description>Exoskeletons can influence human gait. A healthy gait is characterized by a certain amount of variability compared to a non-healthy gait that has more inherent variability; however which exoskeleton assistance parameters are necessary to avoid increasing gait variability or to potentially lower gait variability below that of unassisted walking are unknown. This study investigated the interaction effects of exoskeleton timing and power on gait variability. Ten healthy participants walked on a treadmill with bilateral ankle-foot exoskeletons under ten conditions with different timing (varied from 36% to 54% of the stride) and power (varied from 0.2 to 0.5 W∙kg-1) combinations. We used the largest Lyapunov exponent (LyE) and maximum Floquet multiplier (FM) to evaluate the stride-to-stride fluctuations of the kinematic time series. We found the lowest LyE at the ankle and a significant reduction versus powered-off with exoskeleton power (summed for both legs) of 0.45 W∙kg-1 and actuation timing at 48% of the stride cycle. At the knee, a significant positive effect of power and a negative interaction effect of power and timing were found for LyE. We found significant positive interaction effects of the square of timing and power for LyE at the knee and hip joints. In contrast, the FM at the ankle increased with increasing power and later timing. We found a significant negative effect of power and a positive interaction effect of power and timing for FM at the knee and no significant effects of any of the exoskeleton parameters for FM at the hip. The ability of the exoskeleton to reduce the LyE at the ankle joint offers new possibilities in terms of altering gait variability, which could have applications for using exoskeletons as rehabilitation devices. Further efforts could examine if it is possible to simultaneously reduce the LyE and FM at one or more lower limb joints.</description><subject>ASSISTANCE</subject><subject>ATTRACTOR DIVERGENCE</subject><subject>ENERGETICS</subject><subject>FALL-PRONE</subject><subject>KINEMATIC VARIABILITY</subject><subject>LOCAL DYNAMIC STABILITY</subject><subject>Medicine and Health Sciences</subject><subject>METABOLIC COST</subject><subject>OLDER-ADULTS</subject><subject>PREDICTORS</subject><subject>WALKING SPEED</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdi00KwjAQRoMoWH_ukAsUakNKuxRRPID7MC3TZGxIIRmr3l4FF66FD96DxzcT2a5RZV6VhZr_-FKsUroWhVZ1VWVC7T1jpGClBWI5QSRoyRM_5Z3YSQjvDR4lPsY0oEcew0YsevAJt1-uRXk6Xg7n3DoMbDy1ETtgMwIZiJ2jCc3NflKLptZ1oxut_jq9AKzAQrI</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Antonellis, Prokopios</creator><creator>Galle, Samuel</creator><creator>De Clercq, Dirk</creator><creator>Malcolm, Philippe</creator><scope>ADGLB</scope></search><sort><creationdate>2018</creationdate><title>Altering gait variability with an ankle exoskeleton</title><author>Antonellis, Prokopios ; Galle, Samuel ; De Clercq, Dirk ; Malcolm, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_85895953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ASSISTANCE</topic><topic>ATTRACTOR DIVERGENCE</topic><topic>ENERGETICS</topic><topic>FALL-PRONE</topic><topic>KINEMATIC VARIABILITY</topic><topic>LOCAL DYNAMIC STABILITY</topic><topic>Medicine and Health Sciences</topic><topic>METABOLIC COST</topic><topic>OLDER-ADULTS</topic><topic>PREDICTORS</topic><topic>WALKING SPEED</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonellis, Prokopios</creatorcontrib><creatorcontrib>Galle, Samuel</creatorcontrib><creatorcontrib>De Clercq, Dirk</creatorcontrib><creatorcontrib>Malcolm, Philippe</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonellis, Prokopios</au><au>Galle, Samuel</au><au>De Clercq, Dirk</au><au>Malcolm, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Altering gait variability with an ankle exoskeleton</atitle><date>2018</date><risdate>2018</risdate><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Exoskeletons can influence human gait. A healthy gait is characterized by a certain amount of variability compared to a non-healthy gait that has more inherent variability; however which exoskeleton assistance parameters are necessary to avoid increasing gait variability or to potentially lower gait variability below that of unassisted walking are unknown. This study investigated the interaction effects of exoskeleton timing and power on gait variability. Ten healthy participants walked on a treadmill with bilateral ankle-foot exoskeletons under ten conditions with different timing (varied from 36% to 54% of the stride) and power (varied from 0.2 to 0.5 W∙kg-1) combinations. We used the largest Lyapunov exponent (LyE) and maximum Floquet multiplier (FM) to evaluate the stride-to-stride fluctuations of the kinematic time series. We found the lowest LyE at the ankle and a significant reduction versus powered-off with exoskeleton power (summed for both legs) of 0.45 W∙kg-1 and actuation timing at 48% of the stride cycle. At the knee, a significant positive effect of power and a negative interaction effect of power and timing were found for LyE. We found significant positive interaction effects of the square of timing and power for LyE at the knee and hip joints. In contrast, the FM at the ankle increased with increasing power and later timing. We found a significant negative effect of power and a positive interaction effect of power and timing for FM at the knee and no significant effects of any of the exoskeleton parameters for FM at the hip. The ability of the exoskeleton to reduce the LyE at the ankle joint offers new possibilities in terms of altering gait variability, which could have applications for using exoskeletons as rehabilitation devices. Further efforts could examine if it is possible to simultaneously reduce the LyE and FM at one or more lower limb joints.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof
issn 1932-6203
1932-6203
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_8589595
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); Ghent University Academic Bibliography; PubMed Central; Free Full-Text Journals in Chemistry
subjects ASSISTANCE
ATTRACTOR DIVERGENCE
ENERGETICS
FALL-PRONE
KINEMATIC VARIABILITY
LOCAL DYNAMIC STABILITY
Medicine and Health Sciences
METABOLIC COST
OLDER-ADULTS
PREDICTORS
WALKING SPEED
title Altering gait variability with an ankle exoskeleton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Altering%20gait%20variability%20with%20an%20ankle%20exoskeleton&rft.au=Antonellis,%20Prokopios&rft.date=2018&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_8589595%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true