Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects

The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Myklebust, Line M, Van Damme, Petra, Støve, Svein I, Dörfel, Max J, Abboud, Angèle, Kalvik, Thomas V, Grauffel, Cedric, Jonckheere, Veronique, Wu, Yiyang, Swensen, Jeffrey, Kaasa, Hanna, Liszczak, Glen, Marmorstein, Ronen, Reuter, Nathalie, Lyon, Gholson J, Gevaert, Kris, Arnesen, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Myklebust, Line M
Van Damme, Petra
Støve, Svein I
Dörfel, Max J
Abboud, Angèle
Kalvik, Thomas V
Grauffel, Cedric
Jonckheere, Veronique
Wu, Yiyang
Swensen, Jeffrey
Kaasa, Hanna
Liszczak, Glen
Marmorstein, Ronen
Reuter, Nathalie
Lyon, Gholson J
Gevaert, Kris
Arnesen, Thomas
description The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.
format Article
fullrecord <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_6891146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_6891146</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_68911463</originalsourceid><addsrcrecordid>eNqdi0sKwjAURTNQsH728DZQaLVEO1UURzpxKuE1eW0jaQJJWunureAKHF0O59wZS7KSFykvM75gyxBeWZbzYrdP2POonWyp0xINoFUgyZjeoJ8AzRh0AFfDvVFkIYxWedcReBoITQDl3jZET9jBLaYoKY4Go3YWFNUkY1izeT2FtPntim0v58fpmjYt2SiMrjxJjMKhFuhlqwcSffNVFQl-KPO84Lu_Th8lnVDB</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><source>Ghent University Academic Bibliography</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creator><creatorcontrib>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creatorcontrib><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><identifier>ISSN: 0964-6906</identifier><language>eng</language><subject>ALPHA-ACETYLTRANSFERASE ; ARD1 ; ARF-LIKE GTPASE ; Biology and Life Sciences ; IN-VIVO ; INTEGRAL MEMBRANE-PROTEIN ; MOLECULAR-BASIS ; SACCHAROMYCES-CEREVISIAE ; TERMINAL ACETYLTRANSFERASE COMPLEX ; X-CHROMOSOME INACTIVATION ; YEAST</subject><creationdate>2015</creationdate><rights>No license (in copyright) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4024,27860</link.rule.ids></links><search><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><subject>ALPHA-ACETYLTRANSFERASE</subject><subject>ARD1</subject><subject>ARF-LIKE GTPASE</subject><subject>Biology and Life Sciences</subject><subject>IN-VIVO</subject><subject>INTEGRAL MEMBRANE-PROTEIN</subject><subject>MOLECULAR-BASIS</subject><subject>SACCHAROMYCES-CEREVISIAE</subject><subject>TERMINAL ACETYLTRANSFERASE COMPLEX</subject><subject>X-CHROMOSOME INACTIVATION</subject><subject>YEAST</subject><issn>0964-6906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdi0sKwjAURTNQsH728DZQaLVEO1UURzpxKuE1eW0jaQJJWunureAKHF0O59wZS7KSFykvM75gyxBeWZbzYrdP2POonWyp0xINoFUgyZjeoJ8AzRh0AFfDvVFkIYxWedcReBoITQDl3jZET9jBLaYoKY4Go3YWFNUkY1izeT2FtPntim0v58fpmjYt2SiMrjxJjMKhFuhlqwcSffNVFQl-KPO84Lu_Th8lnVDB</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Myklebust, Line M</creator><creator>Van Damme, Petra</creator><creator>Støve, Svein I</creator><creator>Dörfel, Max J</creator><creator>Abboud, Angèle</creator><creator>Kalvik, Thomas V</creator><creator>Grauffel, Cedric</creator><creator>Jonckheere, Veronique</creator><creator>Wu, Yiyang</creator><creator>Swensen, Jeffrey</creator><creator>Kaasa, Hanna</creator><creator>Liszczak, Glen</creator><creator>Marmorstein, Ronen</creator><creator>Reuter, Nathalie</creator><creator>Lyon, Gholson J</creator><creator>Gevaert, Kris</creator><creator>Arnesen, Thomas</creator><scope>ADGLB</scope></search><sort><creationdate>2015</creationdate><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><author>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_68911463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ALPHA-ACETYLTRANSFERASE</topic><topic>ARD1</topic><topic>ARF-LIKE GTPASE</topic><topic>Biology and Life Sciences</topic><topic>IN-VIVO</topic><topic>INTEGRAL MEMBRANE-PROTEIN</topic><topic>MOLECULAR-BASIS</topic><topic>SACCHAROMYCES-CEREVISIAE</topic><topic>TERMINAL ACETYLTRANSFERASE COMPLEX</topic><topic>X-CHROMOSOME INACTIVATION</topic><topic>YEAST</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myklebust, Line M</au><au>Van Damme, Petra</au><au>Støve, Svein I</au><au>Dörfel, Max J</au><au>Abboud, Angèle</au><au>Kalvik, Thomas V</au><au>Grauffel, Cedric</au><au>Jonckheere, Veronique</au><au>Wu, Yiyang</au><au>Swensen, Jeffrey</au><au>Kaasa, Hanna</au><au>Liszczak, Glen</au><au>Marmorstein, Ronen</au><au>Reuter, Nathalie</au><au>Lyon, Gholson J</au><au>Gevaert, Kris</au><au>Arnesen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</atitle><date>2015</date><risdate>2015</risdate><issn>0964-6906</issn><abstract>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof
issn 0964-6906
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_6891146
source Ghent University Academic Bibliography; Alma/SFX Local Collection; EZB Electronic Journals Library; Oxford Journals
subjects ALPHA-ACETYLTRANSFERASE
ARD1
ARF-LIKE GTPASE
Biology and Life Sciences
IN-VIVO
INTEGRAL MEMBRANE-PROTEIN
MOLECULAR-BASIS
SACCHAROMYCES-CEREVISIAE
TERMINAL ACETYLTRANSFERASE COMPLEX
X-CHROMOSOME INACTIVATION
YEAST
title Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20and%20cellular%20analysis%20of%20Ogden%20syndrome%20reveals%20downstream%20Nt-acetylation%20defects&rft.au=Myklebust,%20Line%20M&rft.date=2015&rft.issn=0964-6906&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_6891146%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true