Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects
The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Myklebust, Line M Van Damme, Petra Støve, Svein I Dörfel, Max J Abboud, Angèle Kalvik, Thomas V Grauffel, Cedric Jonckheere, Veronique Wu, Yiyang Swensen, Jeffrey Kaasa, Hanna Liszczak, Glen Marmorstein, Ronen Reuter, Nathalie Lyon, Gholson J Gevaert, Kris Arnesen, Thomas |
description | The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease. |
format | Article |
fullrecord | <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_6891146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_6891146</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_68911463</originalsourceid><addsrcrecordid>eNqdi0sKwjAURTNQsH728DZQaLVEO1UURzpxKuE1eW0jaQJJWunureAKHF0O59wZS7KSFykvM75gyxBeWZbzYrdP2POonWyp0xINoFUgyZjeoJ8AzRh0AFfDvVFkIYxWedcReBoITQDl3jZET9jBLaYoKY4Go3YWFNUkY1izeT2FtPntim0v58fpmjYt2SiMrjxJjMKhFuhlqwcSffNVFQl-KPO84Lu_Th8lnVDB</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><source>Ghent University Academic Bibliography</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>Oxford Journals</source><creator>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creator><creatorcontrib>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</creatorcontrib><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><identifier>ISSN: 0964-6906</identifier><language>eng</language><subject>ALPHA-ACETYLTRANSFERASE ; ARD1 ; ARF-LIKE GTPASE ; Biology and Life Sciences ; IN-VIVO ; INTEGRAL MEMBRANE-PROTEIN ; MOLECULAR-BASIS ; SACCHAROMYCES-CEREVISIAE ; TERMINAL ACETYLTRANSFERASE COMPLEX ; X-CHROMOSOME INACTIVATION ; YEAST</subject><creationdate>2015</creationdate><rights>No license (in copyright) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4024,27860</link.rule.ids></links><search><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><description>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</description><subject>ALPHA-ACETYLTRANSFERASE</subject><subject>ARD1</subject><subject>ARF-LIKE GTPASE</subject><subject>Biology and Life Sciences</subject><subject>IN-VIVO</subject><subject>INTEGRAL MEMBRANE-PROTEIN</subject><subject>MOLECULAR-BASIS</subject><subject>SACCHAROMYCES-CEREVISIAE</subject><subject>TERMINAL ACETYLTRANSFERASE COMPLEX</subject><subject>X-CHROMOSOME INACTIVATION</subject><subject>YEAST</subject><issn>0964-6906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqdi0sKwjAURTNQsH728DZQaLVEO1UURzpxKuE1eW0jaQJJWunureAKHF0O59wZS7KSFykvM75gyxBeWZbzYrdP2POonWyp0xINoFUgyZjeoJ8AzRh0AFfDvVFkIYxWedcReBoITQDl3jZET9jBLaYoKY4Go3YWFNUkY1izeT2FtPntim0v58fpmjYt2SiMrjxJjMKhFuhlqwcSffNVFQl-KPO84Lu_Th8lnVDB</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Myklebust, Line M</creator><creator>Van Damme, Petra</creator><creator>Støve, Svein I</creator><creator>Dörfel, Max J</creator><creator>Abboud, Angèle</creator><creator>Kalvik, Thomas V</creator><creator>Grauffel, Cedric</creator><creator>Jonckheere, Veronique</creator><creator>Wu, Yiyang</creator><creator>Swensen, Jeffrey</creator><creator>Kaasa, Hanna</creator><creator>Liszczak, Glen</creator><creator>Marmorstein, Ronen</creator><creator>Reuter, Nathalie</creator><creator>Lyon, Gholson J</creator><creator>Gevaert, Kris</creator><creator>Arnesen, Thomas</creator><scope>ADGLB</scope></search><sort><creationdate>2015</creationdate><title>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</title><author>Myklebust, Line M ; Van Damme, Petra ; Støve, Svein I ; Dörfel, Max J ; Abboud, Angèle ; Kalvik, Thomas V ; Grauffel, Cedric ; Jonckheere, Veronique ; Wu, Yiyang ; Swensen, Jeffrey ; Kaasa, Hanna ; Liszczak, Glen ; Marmorstein, Ronen ; Reuter, Nathalie ; Lyon, Gholson J ; Gevaert, Kris ; Arnesen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_68911463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ALPHA-ACETYLTRANSFERASE</topic><topic>ARD1</topic><topic>ARF-LIKE GTPASE</topic><topic>Biology and Life Sciences</topic><topic>IN-VIVO</topic><topic>INTEGRAL MEMBRANE-PROTEIN</topic><topic>MOLECULAR-BASIS</topic><topic>SACCHAROMYCES-CEREVISIAE</topic><topic>TERMINAL ACETYLTRANSFERASE COMPLEX</topic><topic>X-CHROMOSOME INACTIVATION</topic><topic>YEAST</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Myklebust, Line M</creatorcontrib><creatorcontrib>Van Damme, Petra</creatorcontrib><creatorcontrib>Støve, Svein I</creatorcontrib><creatorcontrib>Dörfel, Max J</creatorcontrib><creatorcontrib>Abboud, Angèle</creatorcontrib><creatorcontrib>Kalvik, Thomas V</creatorcontrib><creatorcontrib>Grauffel, Cedric</creatorcontrib><creatorcontrib>Jonckheere, Veronique</creatorcontrib><creatorcontrib>Wu, Yiyang</creatorcontrib><creatorcontrib>Swensen, Jeffrey</creatorcontrib><creatorcontrib>Kaasa, Hanna</creatorcontrib><creatorcontrib>Liszczak, Glen</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><creatorcontrib>Reuter, Nathalie</creatorcontrib><creatorcontrib>Lyon, Gholson J</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Arnesen, Thomas</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Myklebust, Line M</au><au>Van Damme, Petra</au><au>Støve, Svein I</au><au>Dörfel, Max J</au><au>Abboud, Angèle</au><au>Kalvik, Thomas V</au><au>Grauffel, Cedric</au><au>Jonckheere, Veronique</au><au>Wu, Yiyang</au><au>Swensen, Jeffrey</au><au>Kaasa, Hanna</au><au>Liszczak, Glen</au><au>Marmorstein, Ronen</au><au>Reuter, Nathalie</au><au>Lyon, Gholson J</au><au>Gevaert, Kris</au><au>Arnesen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects</atitle><date>2015</date><risdate>2015</risdate><issn>0964-6906</issn><abstract>The X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | |
issn | 0964-6906 |
language | eng |
recordid | cdi_ghent_librecat_oai_archive_ugent_be_6891146 |
source | Ghent University Academic Bibliography; Alma/SFX Local Collection; EZB Electronic Journals Library; Oxford Journals |
subjects | ALPHA-ACETYLTRANSFERASE ARD1 ARF-LIKE GTPASE Biology and Life Sciences IN-VIVO INTEGRAL MEMBRANE-PROTEIN MOLECULAR-BASIS SACCHAROMYCES-CEREVISIAE TERMINAL ACETYLTRANSFERASE COMPLEX X-CHROMOSOME INACTIVATION YEAST |
title | Biochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A31%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20and%20cellular%20analysis%20of%20Ogden%20syndrome%20reveals%20downstream%20Nt-acetylation%20defects&rft.au=Myklebust,%20Line%20M&rft.date=2015&rft.issn=0964-6906&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_6891146%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |