Semantics-driven event clustering in Twitter feeds

Detecting events using social media such as Twitter has many useful applications in real-life situations. Many algorithms which all use different information sources - either textual, temporal, geographic or community features - have been developed to achieve this task. Semantic information is often...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: De Boom, Cedric, Van Canneyt, Steven, Dhoedt, Bart
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting events using social media such as Twitter has many useful applications in real-life situations. Many algorithms which all use different information sources - either textual, temporal, geographic or community features - have been developed to achieve this task. Semantic information is often added at the end of the event detection to classify events into semantic topics. But semantic information can also be used to drive the actual event detection, which is less covered by academic research. We therefore supplemented an existing baseline event clustering algorithm with semantic information about the tweets in order to improve its performance. This paper lays out the details of the semantics-driven event clustering algorithms developed, discusses a novel method to aid in the creation of a ground truth for event detection purposes, and analyses how well the algorithms improve over baseline. We find that assigning semantic information to every individual tweet results in just a worse performance in F1 measure compared to baseline. If however semantics are assigned on a coarser, hashtag level the improvement over baseline is substantial and significant in both precision and recall.
ISSN:1613-0073
1613-0073