Microfluidic interfaces for chronic bidirectional access to the brain

Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marcigaglia, Simone, De Plus, Robin, Vandendriessche, Charysse, Schiltz, Eleonore, Cuypers, Marie-Lynn, Cools, Jordi, Hoffman, Luis D, Vandenbroucke, Roosmarijn, Dewilde, Maarten, Haesler, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Marcigaglia, Simone
De Plus, Robin
Vandendriessche, Charysse
Schiltz, Eleonore
Cuypers, Marie-Lynn
Cools, Jordi
Hoffman, Luis D
Vandenbroucke, Roosmarijn
Dewilde, Maarten
Haesler, Sebastian
description Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases. The limited passage of molecules between the blood and the brain poses a major challenge for drug research and therapy. To address this, the authors use ultrahigh resolution additive manufacturing to develop a miniaturized microcatheter platform for faster, more predictable, and physiologically nondisruptive fluid delivery as well as reliable fluid collection, at rates and with long-term stability not reported before.
format Article
fullrecord <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_01J1PKK3WVNJFGJ39E7EC18ZWY</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_01J1PKK3WVNJFGJ39E7EC18ZWY</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_01J1PKK3WVNJFGJ39E7EC18ZWY3</originalsourceid><addsrcrecordid>eNqtjNEKgjAYhXdRkJTvsBcQnKLptcxCKbqIpG7GXFP_kA222fO3oEfo3HxwPs5ZoSAhZRIleVZuUGjtK_bJM5IXJED0BMLoYV7gCQKDctIMXEiLB22wmIxWvu69NFI40IrPmAvvLXYau0ni3nBQO7Qe-Gxl-OMW0Zpeq2M0TlI5NkPv59wxzYFxIyZ4S7aMX9VLFpOGXNo27W7npj40aUn3tCLFo7un__r5AGCpUz4</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microfluidic interfaces for chronic bidirectional access to the brain</title><source>Wiley Online Library</source><source>Ghent University Academic Bibliography</source><creator>Marcigaglia, Simone ; De Plus, Robin ; Vandendriessche, Charysse ; Schiltz, Eleonore ; Cuypers, Marie-Lynn ; Cools, Jordi ; Hoffman, Luis D ; Vandenbroucke, Roosmarijn ; Dewilde, Maarten ; Haesler, Sebastian</creator><creatorcontrib>Marcigaglia, Simone ; De Plus, Robin ; Vandendriessche, Charysse ; Schiltz, Eleonore ; Cuypers, Marie-Lynn ; Cools, Jordi ; Hoffman, Luis D ; Vandenbroucke, Roosmarijn ; Dewilde, Maarten ; Haesler, Sebastian</creatorcontrib><description>Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases. The limited passage of molecules between the blood and the brain poses a major challenge for drug research and therapy. To address this, the authors use ultrahigh resolution additive manufacturing to develop a miniaturized microcatheter platform for faster, more predictable, and physiologically nondisruptive fluid delivery as well as reliable fluid collection, at rates and with long-term stability not reported before.</description><identifier>ISSN: 2192-2659</identifier><identifier>ISSN: 2192-2640</identifier><language>eng</language><subject>ALZHEIMERS-DISEASE ; Biology and Life Sciences ; BIOMARKERS ; brain disease ; CENTRAL-NERVOUS-SYSTEM ; CEREBROSPINAL-FLUID ; convection-enhanced delivery ; CSF ; INFUSION ; liquid biopsy ; Medicine and Health Sciences ; MOUSE MODEL ; NEUROTROPHIC FACTOR ; TAU</subject><creationdate>2024</creationdate><rights>Creative Commons Attribution-NonCommercial 4.0 International Public License (CC BY-NC 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4024,27860</link.rule.ids></links><search><creatorcontrib>Marcigaglia, Simone</creatorcontrib><creatorcontrib>De Plus, Robin</creatorcontrib><creatorcontrib>Vandendriessche, Charysse</creatorcontrib><creatorcontrib>Schiltz, Eleonore</creatorcontrib><creatorcontrib>Cuypers, Marie-Lynn</creatorcontrib><creatorcontrib>Cools, Jordi</creatorcontrib><creatorcontrib>Hoffman, Luis D</creatorcontrib><creatorcontrib>Vandenbroucke, Roosmarijn</creatorcontrib><creatorcontrib>Dewilde, Maarten</creatorcontrib><creatorcontrib>Haesler, Sebastian</creatorcontrib><title>Microfluidic interfaces for chronic bidirectional access to the brain</title><description>Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases. The limited passage of molecules between the blood and the brain poses a major challenge for drug research and therapy. To address this, the authors use ultrahigh resolution additive manufacturing to develop a miniaturized microcatheter platform for faster, more predictable, and physiologically nondisruptive fluid delivery as well as reliable fluid collection, at rates and with long-term stability not reported before.</description><subject>ALZHEIMERS-DISEASE</subject><subject>Biology and Life Sciences</subject><subject>BIOMARKERS</subject><subject>brain disease</subject><subject>CENTRAL-NERVOUS-SYSTEM</subject><subject>CEREBROSPINAL-FLUID</subject><subject>convection-enhanced delivery</subject><subject>CSF</subject><subject>INFUSION</subject><subject>liquid biopsy</subject><subject>Medicine and Health Sciences</subject><subject>MOUSE MODEL</subject><subject>NEUROTROPHIC FACTOR</subject><subject>TAU</subject><issn>2192-2659</issn><issn>2192-2640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqtjNEKgjAYhXdRkJTvsBcQnKLptcxCKbqIpG7GXFP_kA222fO3oEfo3HxwPs5ZoSAhZRIleVZuUGjtK_bJM5IXJED0BMLoYV7gCQKDctIMXEiLB22wmIxWvu69NFI40IrPmAvvLXYau0ni3nBQO7Qe-Gxl-OMW0Zpeq2M0TlI5NkPv59wxzYFxIyZ4S7aMX9VLFpOGXNo27W7npj40aUn3tCLFo7un__r5AGCpUz4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Marcigaglia, Simone</creator><creator>De Plus, Robin</creator><creator>Vandendriessche, Charysse</creator><creator>Schiltz, Eleonore</creator><creator>Cuypers, Marie-Lynn</creator><creator>Cools, Jordi</creator><creator>Hoffman, Luis D</creator><creator>Vandenbroucke, Roosmarijn</creator><creator>Dewilde, Maarten</creator><creator>Haesler, Sebastian</creator><scope>ADGLB</scope></search><sort><creationdate>2024</creationdate><title>Microfluidic interfaces for chronic bidirectional access to the brain</title><author>Marcigaglia, Simone ; De Plus, Robin ; Vandendriessche, Charysse ; Schiltz, Eleonore ; Cuypers, Marie-Lynn ; Cools, Jordi ; Hoffman, Luis D ; Vandenbroucke, Roosmarijn ; Dewilde, Maarten ; Haesler, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_01J1PKK3WVNJFGJ39E7EC18ZWY3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ALZHEIMERS-DISEASE</topic><topic>Biology and Life Sciences</topic><topic>BIOMARKERS</topic><topic>brain disease</topic><topic>CENTRAL-NERVOUS-SYSTEM</topic><topic>CEREBROSPINAL-FLUID</topic><topic>convection-enhanced delivery</topic><topic>CSF</topic><topic>INFUSION</topic><topic>liquid biopsy</topic><topic>Medicine and Health Sciences</topic><topic>MOUSE MODEL</topic><topic>NEUROTROPHIC FACTOR</topic><topic>TAU</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcigaglia, Simone</creatorcontrib><creatorcontrib>De Plus, Robin</creatorcontrib><creatorcontrib>Vandendriessche, Charysse</creatorcontrib><creatorcontrib>Schiltz, Eleonore</creatorcontrib><creatorcontrib>Cuypers, Marie-Lynn</creatorcontrib><creatorcontrib>Cools, Jordi</creatorcontrib><creatorcontrib>Hoffman, Luis D</creatorcontrib><creatorcontrib>Vandenbroucke, Roosmarijn</creatorcontrib><creatorcontrib>Dewilde, Maarten</creatorcontrib><creatorcontrib>Haesler, Sebastian</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcigaglia, Simone</au><au>De Plus, Robin</au><au>Vandendriessche, Charysse</au><au>Schiltz, Eleonore</au><au>Cuypers, Marie-Lynn</au><au>Cools, Jordi</au><au>Hoffman, Luis D</au><au>Vandenbroucke, Roosmarijn</au><au>Dewilde, Maarten</au><au>Haesler, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic interfaces for chronic bidirectional access to the brain</atitle><date>2024</date><risdate>2024</risdate><issn>2192-2659</issn><issn>2192-2640</issn><abstract>Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases. The limited passage of molecules between the blood and the brain poses a major challenge for drug research and therapy. To address this, the authors use ultrahigh resolution additive manufacturing to develop a miniaturized microcatheter platform for faster, more predictable, and physiologically nondisruptive fluid delivery as well as reliable fluid collection, at rates and with long-term stability not reported before.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2659
ispartof
issn 2192-2659
2192-2640
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_01J1PKK3WVNJFGJ39E7EC18ZWY
source Wiley Online Library; Ghent University Academic Bibliography
subjects ALZHEIMERS-DISEASE
Biology and Life Sciences
BIOMARKERS
brain disease
CENTRAL-NERVOUS-SYSTEM
CEREBROSPINAL-FLUID
convection-enhanced delivery
CSF
INFUSION
liquid biopsy
Medicine and Health Sciences
MOUSE MODEL
NEUROTROPHIC FACTOR
TAU
title Microfluidic interfaces for chronic bidirectional access to the brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20interfaces%20for%20chronic%20bidirectional%20access%20to%20the%20brain&rft.au=Marcigaglia,%20Simone&rft.date=2024&rft.issn=2192-2659&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_01J1PKK3WVNJFGJ39E7EC18ZWY%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true