Guiding light with surface exciton–polaritons in atomically thin superlattices

Two-dimensional materials give access to the ultimate physical limits of photonics with appealing properties for ultracompact optical components such as waveguides and modulators. Specifically, in monolayer semiconductors, a strong excitonic resonance leads to a sharp oscillation in permittivity fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Elrafey, Sara, TV, Raziman, de Vega, Sandra, García de Abajo, F. Javier, Curto, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Elrafey, Sara
TV, Raziman
de Vega, Sandra
García de Abajo, F. Javier
Curto, Alberto
description Two-dimensional materials give access to the ultimate physical limits of photonics with appealing properties for ultracompact optical components such as waveguides and modulators. Specifically, in monolayer semiconductors, a strong excitonic resonance leads to a sharp oscillation in permittivity from positive to even negative values. This extreme optical response enables surface exciton–polaritons to guide visible light bound to an atomically thin layer. However, such ultrathin waveguides support a transverse electric (TE) mode with low confinement and a transverse magnetic (TM) mode with short propagation. Here, we propose that realistic semiconductor–insulator–semiconductor superlattices comprising monolayer WS2 and hexagonal boron nitride (hBN) can improve the properties of both TE and TM modes. Compared to a single monolayer, a heterostructure with a 1-nm hBN spacer separating two monolayers enhances the confinement of the TE mode from 1.2 to around 0.5 μm, while the out-of-plane extension of the TM mode increases from 25 to 50 nm. We propose two simple additivity rules for mode confinement valid in the ultrathin film approximation for heterostructures with increasing spacer thickness. Stacking additional WS2 monolayers into superlattices further enhances the waveguiding properties. Our results underscore the potential of monolayer-based superlattices as a platform for visible-range nanophotonics with promising optical, electrical, and magnetic tunability.
format Article
fullrecord <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_01HWGPV5SVYA541FMBAEK9Y0HJ</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_01HWGPV5SVYA541FMBAEK9Y0HJ</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_01HWGPV5SVYA541FMBAEK9Y0HJ3</originalsourceid><addsrcrecordid>eNpjYeA0MrQ00rUwMzThYOAtLs4yAAJLS2NDSzNOhgD30syUzLx0hZzM9IwShfLMkgyF4tKitMTkVIXUiuTMkvy8Rw2TC_JzEotA7GKFzDyFxJL83MzkxJycSoWSDCC_uLQgtSgnsaQkMzm1mIeBNS0xpziVF0pzM7i6uYY4e-imZ6TmlcTnZCYVpSYnlsTnJ2bGJxYlZ2SWpcaXpoOkklLjDQw9wt0DwkyDwyIdTU0M3XydHF29LSMNPLyMqWUOAMJeWTM</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Guiding light with surface exciton–polaritons in atomically thin superlattices</title><source>Ghent University Academic Bibliography</source><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Elrafey, Sara ; TV, Raziman ; de Vega, Sandra ; García de Abajo, F. Javier ; Curto, Alberto</creator><creatorcontrib>Elrafey, Sara ; TV, Raziman ; de Vega, Sandra ; García de Abajo, F. Javier ; Curto, Alberto</creatorcontrib><description>Two-dimensional materials give access to the ultimate physical limits of photonics with appealing properties for ultracompact optical components such as waveguides and modulators. Specifically, in monolayer semiconductors, a strong excitonic resonance leads to a sharp oscillation in permittivity from positive to even negative values. This extreme optical response enables surface exciton–polaritons to guide visible light bound to an atomically thin layer. However, such ultrathin waveguides support a transverse electric (TE) mode with low confinement and a transverse magnetic (TM) mode with short propagation. Here, we propose that realistic semiconductor–insulator–semiconductor superlattices comprising monolayer WS2 and hexagonal boron nitride (hBN) can improve the properties of both TE and TM modes. Compared to a single monolayer, a heterostructure with a 1-nm hBN spacer separating two monolayers enhances the confinement of the TE mode from 1.2 to around 0.5 μm, while the out-of-plane extension of the TM mode increases from 25 to 50 nm. We propose two simple additivity rules for mode confinement valid in the ultrathin film approximation for heterostructures with increasing spacer thickness. Stacking additional WS2 monolayers into superlattices further enhances the waveguiding properties. Our results underscore the potential of monolayer-based superlattices as a platform for visible-range nanophotonics with promising optical, electrical, and magnetic tunability.</description><identifier>ISSN: 2192-8614</identifier><identifier>ISSN: 2192-8606</identifier><language>eng</language><subject>2D semiconductors ; exciton-polaritons ; Physics and Astronomy ; Technology and Engineering ; van der Waals heterostructures ; WS2</subject><creationdate>2024</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>Elrafey, Sara</creatorcontrib><creatorcontrib>TV, Raziman</creatorcontrib><creatorcontrib>de Vega, Sandra</creatorcontrib><creatorcontrib>García de Abajo, F. Javier</creatorcontrib><creatorcontrib>Curto, Alberto</creatorcontrib><title>Guiding light with surface exciton–polaritons in atomically thin superlattices</title><description>Two-dimensional materials give access to the ultimate physical limits of photonics with appealing properties for ultracompact optical components such as waveguides and modulators. Specifically, in monolayer semiconductors, a strong excitonic resonance leads to a sharp oscillation in permittivity from positive to even negative values. This extreme optical response enables surface exciton–polaritons to guide visible light bound to an atomically thin layer. However, such ultrathin waveguides support a transverse electric (TE) mode with low confinement and a transverse magnetic (TM) mode with short propagation. Here, we propose that realistic semiconductor–insulator–semiconductor superlattices comprising monolayer WS2 and hexagonal boron nitride (hBN) can improve the properties of both TE and TM modes. Compared to a single monolayer, a heterostructure with a 1-nm hBN spacer separating two monolayers enhances the confinement of the TE mode from 1.2 to around 0.5 μm, while the out-of-plane extension of the TM mode increases from 25 to 50 nm. We propose two simple additivity rules for mode confinement valid in the ultrathin film approximation for heterostructures with increasing spacer thickness. Stacking additional WS2 monolayers into superlattices further enhances the waveguiding properties. Our results underscore the potential of monolayer-based superlattices as a platform for visible-range nanophotonics with promising optical, electrical, and magnetic tunability.</description><subject>2D semiconductors</subject><subject>exciton-polaritons</subject><subject>Physics and Astronomy</subject><subject>Technology and Engineering</subject><subject>van der Waals heterostructures</subject><subject>WS2</subject><issn>2192-8614</issn><issn>2192-8606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNpjYeA0MrQ00rUwMzThYOAtLs4yAAJLS2NDSzNOhgD30syUzLx0hZzM9IwShfLMkgyF4tKitMTkVIXUiuTMkvy8Rw2TC_JzEotA7GKFzDyFxJL83MzkxJycSoWSDCC_uLQgtSgnsaQkMzm1mIeBNS0xpziVF0pzM7i6uYY4e-imZ6TmlcTnZCYVpSYnlsTnJ2bGJxYlZ2SWpcaXpoOkklLjDQw9wt0DwkyDwyIdTU0M3XydHF29LSMNPLyMqWUOAMJeWTM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Elrafey, Sara</creator><creator>TV, Raziman</creator><creator>de Vega, Sandra</creator><creator>García de Abajo, F. Javier</creator><creator>Curto, Alberto</creator><scope>ADGLB</scope></search><sort><creationdate>2024</creationdate><title>Guiding light with surface exciton–polaritons in atomically thin superlattices</title><author>Elrafey, Sara ; TV, Raziman ; de Vega, Sandra ; García de Abajo, F. Javier ; Curto, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_01HWGPV5SVYA541FMBAEK9Y0HJ3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D semiconductors</topic><topic>exciton-polaritons</topic><topic>Physics and Astronomy</topic><topic>Technology and Engineering</topic><topic>van der Waals heterostructures</topic><topic>WS2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elrafey, Sara</creatorcontrib><creatorcontrib>TV, Raziman</creatorcontrib><creatorcontrib>de Vega, Sandra</creatorcontrib><creatorcontrib>García de Abajo, F. Javier</creatorcontrib><creatorcontrib>Curto, Alberto</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elrafey, Sara</au><au>TV, Raziman</au><au>de Vega, Sandra</au><au>García de Abajo, F. Javier</au><au>Curto, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guiding light with surface exciton–polaritons in atomically thin superlattices</atitle><date>2024</date><risdate>2024</risdate><issn>2192-8614</issn><issn>2192-8606</issn><abstract>Two-dimensional materials give access to the ultimate physical limits of photonics with appealing properties for ultracompact optical components such as waveguides and modulators. Specifically, in monolayer semiconductors, a strong excitonic resonance leads to a sharp oscillation in permittivity from positive to even negative values. This extreme optical response enables surface exciton–polaritons to guide visible light bound to an atomically thin layer. However, such ultrathin waveguides support a transverse electric (TE) mode with low confinement and a transverse magnetic (TM) mode with short propagation. Here, we propose that realistic semiconductor–insulator–semiconductor superlattices comprising monolayer WS2 and hexagonal boron nitride (hBN) can improve the properties of both TE and TM modes. Compared to a single monolayer, a heterostructure with a 1-nm hBN spacer separating two monolayers enhances the confinement of the TE mode from 1.2 to around 0.5 μm, while the out-of-plane extension of the TM mode increases from 25 to 50 nm. We propose two simple additivity rules for mode confinement valid in the ultrathin film approximation for heterostructures with increasing spacer thickness. Stacking additional WS2 monolayers into superlattices further enhances the waveguiding properties. Our results underscore the potential of monolayer-based superlattices as a platform for visible-range nanophotonics with promising optical, electrical, and magnetic tunability.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-8614
ispartof
issn 2192-8614
2192-8606
language eng
recordid cdi_ghent_librecat_oai_archive_ugent_be_01HWGPV5SVYA541FMBAEK9Y0HJ
source Ghent University Academic Bibliography; De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 2D semiconductors
exciton-polaritons
Physics and Astronomy
Technology and Engineering
van der Waals heterostructures
WS2
title Guiding light with surface exciton–polaritons in atomically thin superlattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T12%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guiding%20light%20with%20surface%20exciton%E2%80%93polaritons%20in%20atomically%20thin%20superlattices&rft.au=Elrafey,%20Sara&rft.date=2024&rft.issn=2192-8614&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_01HWGPV5SVYA541FMBAEK9Y0HJ%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true