JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw
Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), in...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Shahbandeh, Melissa Sarangi, Arkaprabha Temim, Tea Szalai, Tamás Fox, Ori D Tinyanont, Samaporn Dwek, Eli Dessart, Luc Filippenko, Alexei V Brink, Thomas G Foley, Ryan J Jencson, Jacob Pierel, Justin Zsíros, Szanna Rest, Armin Zheng, WeiKang Andrews, Jennifer Clayton, Geoffrey C De, Kishalay Engesser, Michael Gezari, Suvi Gomez, Sebastian Gonzaga, Shireen Johansson, Joel Kasliwal, Mansi Lau, Ryan De Looze, Ilse Marston, Anthony Milisavljevic, Dan O’Steen, Richard Siebert, Matthew Skrutskie, Michael Smith, Nathan Strolger, Lou Van Dyk, Schuyler D Wang, Qinan Williams, Brian Williams, Robert Xiao, Lin Yang, Yi |
description | Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 mu m) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 x 10(-4) M-circle dot, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to similar to 100-150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe. |
format | Article |
fullrecord | <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_01HR77XCS95FZ3DFAYGGDW5W4C</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_01HR77XCS95FZ3DFAYGGDW5W4C</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_01HR77XCS95FZ3DFAYGGDW5W4C3</originalsourceid><addsrcrecordid>eNqtjEsKwjAURTNQ8LuHtwEhbVqjQ6nWz0DEFqpOQqpPjUgiSVpx9yq4BEfnci6cBmlTyuLBiAdBi3Scu1FKIxYO22S9KrIcTOnQ1tIrox2YM5wq58HiVxplHSgN_vVAWC434KoHWm1qiRB-KuhB6tNnBhzls0eaZ3l32P-xS2bpLE8Wg8sVtRd3VVo8Si-MVELa41XVKKrL9ypR0GCx5XyXZOM4PbBpOtnP59MiLqKE_avzBmQlU6s</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw</title><source>Oxford Journals Open Access Collection</source><source>Ghent University Academic Bibliography</source><creator>Shahbandeh, Melissa ; Sarangi, Arkaprabha ; Temim, Tea ; Szalai, Tamás ; Fox, Ori D ; Tinyanont, Samaporn ; Dwek, Eli ; Dessart, Luc ; Filippenko, Alexei V ; Brink, Thomas G ; Foley, Ryan J ; Jencson, Jacob ; Pierel, Justin ; Zsíros, Szanna ; Rest, Armin ; Zheng, WeiKang ; Andrews, Jennifer ; Clayton, Geoffrey C ; De, Kishalay ; Engesser, Michael ; Gezari, Suvi ; Gomez, Sebastian ; Gonzaga, Shireen ; Johansson, Joel ; Kasliwal, Mansi ; Lau, Ryan ; De Looze, Ilse ; Marston, Anthony ; Milisavljevic, Dan ; O’Steen, Richard ; Siebert, Matthew ; Skrutskie, Michael ; Smith, Nathan ; Strolger, Lou ; Van Dyk, Schuyler D ; Wang, Qinan ; Williams, Brian ; Williams, Robert ; Xiao, Lin ; Yang, Yi</creator><creatorcontrib>Shahbandeh, Melissa ; Sarangi, Arkaprabha ; Temim, Tea ; Szalai, Tamás ; Fox, Ori D ; Tinyanont, Samaporn ; Dwek, Eli ; Dessart, Luc ; Filippenko, Alexei V ; Brink, Thomas G ; Foley, Ryan J ; Jencson, Jacob ; Pierel, Justin ; Zsíros, Szanna ; Rest, Armin ; Zheng, WeiKang ; Andrews, Jennifer ; Clayton, Geoffrey C ; De, Kishalay ; Engesser, Michael ; Gezari, Suvi ; Gomez, Sebastian ; Gonzaga, Shireen ; Johansson, Joel ; Kasliwal, Mansi ; Lau, Ryan ; De Looze, Ilse ; Marston, Anthony ; Milisavljevic, Dan ; O’Steen, Richard ; Siebert, Matthew ; Skrutskie, Michael ; Smith, Nathan ; Strolger, Lou ; Van Dyk, Schuyler D ; Wang, Qinan ; Williams, Brian ; Williams, Robert ; Xiao, Lin ; Yang, Yi</creatorcontrib><description>Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 mu m) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 x 10(-4) M-circle dot, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to similar to 100-150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe.</description><identifier>ISSN: 0035-8711</identifier><identifier>ISSN: 1365-2966</identifier><language>eng</language><subject>Astronomy and Astrophysics ; CORE-COLLAPSE SUPERNOVAE ; EJECTA DUST ; INFRARED TRANSIENTS ; infrared: general ; INTERSTELLAR DUST ; MIDINFRARED INSTRUMENT ; Physics and Astronomy ; PROGENITOR MASSES ; SN 2004ET ; Space and Planetary Science ; supernovae: general ; supernovae: individual: SN 2004et, SN 2017eaw ; TIME CIRCUMSTELLAR INTERACTION ; transients: supernovae ; WEBB-SPACE-TELESCOPE ; X-RAY-EMISSION</subject><creationdate>2023</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4022,27859</link.rule.ids></links><search><creatorcontrib>Shahbandeh, Melissa</creatorcontrib><creatorcontrib>Sarangi, Arkaprabha</creatorcontrib><creatorcontrib>Temim, Tea</creatorcontrib><creatorcontrib>Szalai, Tamás</creatorcontrib><creatorcontrib>Fox, Ori D</creatorcontrib><creatorcontrib>Tinyanont, Samaporn</creatorcontrib><creatorcontrib>Dwek, Eli</creatorcontrib><creatorcontrib>Dessart, Luc</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><creatorcontrib>Brink, Thomas G</creatorcontrib><creatorcontrib>Foley, Ryan J</creatorcontrib><creatorcontrib>Jencson, Jacob</creatorcontrib><creatorcontrib>Pierel, Justin</creatorcontrib><creatorcontrib>Zsíros, Szanna</creatorcontrib><creatorcontrib>Rest, Armin</creatorcontrib><creatorcontrib>Zheng, WeiKang</creatorcontrib><creatorcontrib>Andrews, Jennifer</creatorcontrib><creatorcontrib>Clayton, Geoffrey C</creatorcontrib><creatorcontrib>De, Kishalay</creatorcontrib><creatorcontrib>Engesser, Michael</creatorcontrib><creatorcontrib>Gezari, Suvi</creatorcontrib><creatorcontrib>Gomez, Sebastian</creatorcontrib><creatorcontrib>Gonzaga, Shireen</creatorcontrib><creatorcontrib>Johansson, Joel</creatorcontrib><creatorcontrib>Kasliwal, Mansi</creatorcontrib><creatorcontrib>Lau, Ryan</creatorcontrib><creatorcontrib>De Looze, Ilse</creatorcontrib><creatorcontrib>Marston, Anthony</creatorcontrib><creatorcontrib>Milisavljevic, Dan</creatorcontrib><creatorcontrib>O’Steen, Richard</creatorcontrib><creatorcontrib>Siebert, Matthew</creatorcontrib><creatorcontrib>Skrutskie, Michael</creatorcontrib><creatorcontrib>Smith, Nathan</creatorcontrib><creatorcontrib>Strolger, Lou</creatorcontrib><creatorcontrib>Van Dyk, Schuyler D</creatorcontrib><creatorcontrib>Wang, Qinan</creatorcontrib><creatorcontrib>Williams, Brian</creatorcontrib><creatorcontrib>Williams, Robert</creatorcontrib><creatorcontrib>Xiao, Lin</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><title>JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw</title><description>Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 mu m) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 x 10(-4) M-circle dot, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to similar to 100-150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe.</description><subject>Astronomy and Astrophysics</subject><subject>CORE-COLLAPSE SUPERNOVAE</subject><subject>EJECTA DUST</subject><subject>INFRARED TRANSIENTS</subject><subject>infrared: general</subject><subject>INTERSTELLAR DUST</subject><subject>MIDINFRARED INSTRUMENT</subject><subject>Physics and Astronomy</subject><subject>PROGENITOR MASSES</subject><subject>SN 2004ET</subject><subject>Space and Planetary Science</subject><subject>supernovae: general</subject><subject>supernovae: individual: SN 2004et, SN 2017eaw</subject><subject>TIME CIRCUMSTELLAR INTERACTION</subject><subject>transients: supernovae</subject><subject>WEBB-SPACE-TELESCOPE</subject><subject>X-RAY-EMISSION</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqtjEsKwjAURTNQ8LuHtwEhbVqjQ6nWz0DEFqpOQqpPjUgiSVpx9yq4BEfnci6cBmlTyuLBiAdBi3Scu1FKIxYO22S9KrIcTOnQ1tIrox2YM5wq58HiVxplHSgN_vVAWC434KoHWm1qiRB-KuhB6tNnBhzls0eaZ3l32P-xS2bpLE8Wg8sVtRd3VVo8Si-MVELa41XVKKrL9ypR0GCx5XyXZOM4PbBpOtnP59MiLqKE_avzBmQlU6s</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Shahbandeh, Melissa</creator><creator>Sarangi, Arkaprabha</creator><creator>Temim, Tea</creator><creator>Szalai, Tamás</creator><creator>Fox, Ori D</creator><creator>Tinyanont, Samaporn</creator><creator>Dwek, Eli</creator><creator>Dessart, Luc</creator><creator>Filippenko, Alexei V</creator><creator>Brink, Thomas G</creator><creator>Foley, Ryan J</creator><creator>Jencson, Jacob</creator><creator>Pierel, Justin</creator><creator>Zsíros, Szanna</creator><creator>Rest, Armin</creator><creator>Zheng, WeiKang</creator><creator>Andrews, Jennifer</creator><creator>Clayton, Geoffrey C</creator><creator>De, Kishalay</creator><creator>Engesser, Michael</creator><creator>Gezari, Suvi</creator><creator>Gomez, Sebastian</creator><creator>Gonzaga, Shireen</creator><creator>Johansson, Joel</creator><creator>Kasliwal, Mansi</creator><creator>Lau, Ryan</creator><creator>De Looze, Ilse</creator><creator>Marston, Anthony</creator><creator>Milisavljevic, Dan</creator><creator>O’Steen, Richard</creator><creator>Siebert, Matthew</creator><creator>Skrutskie, Michael</creator><creator>Smith, Nathan</creator><creator>Strolger, Lou</creator><creator>Van Dyk, Schuyler D</creator><creator>Wang, Qinan</creator><creator>Williams, Brian</creator><creator>Williams, Robert</creator><creator>Xiao, Lin</creator><creator>Yang, Yi</creator><scope>ADGLB</scope></search><sort><creationdate>2023</creationdate><title>JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw</title><author>Shahbandeh, Melissa ; Sarangi, Arkaprabha ; Temim, Tea ; Szalai, Tamás ; Fox, Ori D ; Tinyanont, Samaporn ; Dwek, Eli ; Dessart, Luc ; Filippenko, Alexei V ; Brink, Thomas G ; Foley, Ryan J ; Jencson, Jacob ; Pierel, Justin ; Zsíros, Szanna ; Rest, Armin ; Zheng, WeiKang ; Andrews, Jennifer ; Clayton, Geoffrey C ; De, Kishalay ; Engesser, Michael ; Gezari, Suvi ; Gomez, Sebastian ; Gonzaga, Shireen ; Johansson, Joel ; Kasliwal, Mansi ; Lau, Ryan ; De Looze, Ilse ; Marston, Anthony ; Milisavljevic, Dan ; O’Steen, Richard ; Siebert, Matthew ; Skrutskie, Michael ; Smith, Nathan ; Strolger, Lou ; Van Dyk, Schuyler D ; Wang, Qinan ; Williams, Brian ; Williams, Robert ; Xiao, Lin ; Yang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_01HR77XCS95FZ3DFAYGGDW5W4C3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astronomy and Astrophysics</topic><topic>CORE-COLLAPSE SUPERNOVAE</topic><topic>EJECTA DUST</topic><topic>INFRARED TRANSIENTS</topic><topic>infrared: general</topic><topic>INTERSTELLAR DUST</topic><topic>MIDINFRARED INSTRUMENT</topic><topic>Physics and Astronomy</topic><topic>PROGENITOR MASSES</topic><topic>SN 2004ET</topic><topic>Space and Planetary Science</topic><topic>supernovae: general</topic><topic>supernovae: individual: SN 2004et, SN 2017eaw</topic><topic>TIME CIRCUMSTELLAR INTERACTION</topic><topic>transients: supernovae</topic><topic>WEBB-SPACE-TELESCOPE</topic><topic>X-RAY-EMISSION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahbandeh, Melissa</creatorcontrib><creatorcontrib>Sarangi, Arkaprabha</creatorcontrib><creatorcontrib>Temim, Tea</creatorcontrib><creatorcontrib>Szalai, Tamás</creatorcontrib><creatorcontrib>Fox, Ori D</creatorcontrib><creatorcontrib>Tinyanont, Samaporn</creatorcontrib><creatorcontrib>Dwek, Eli</creatorcontrib><creatorcontrib>Dessart, Luc</creatorcontrib><creatorcontrib>Filippenko, Alexei V</creatorcontrib><creatorcontrib>Brink, Thomas G</creatorcontrib><creatorcontrib>Foley, Ryan J</creatorcontrib><creatorcontrib>Jencson, Jacob</creatorcontrib><creatorcontrib>Pierel, Justin</creatorcontrib><creatorcontrib>Zsíros, Szanna</creatorcontrib><creatorcontrib>Rest, Armin</creatorcontrib><creatorcontrib>Zheng, WeiKang</creatorcontrib><creatorcontrib>Andrews, Jennifer</creatorcontrib><creatorcontrib>Clayton, Geoffrey C</creatorcontrib><creatorcontrib>De, Kishalay</creatorcontrib><creatorcontrib>Engesser, Michael</creatorcontrib><creatorcontrib>Gezari, Suvi</creatorcontrib><creatorcontrib>Gomez, Sebastian</creatorcontrib><creatorcontrib>Gonzaga, Shireen</creatorcontrib><creatorcontrib>Johansson, Joel</creatorcontrib><creatorcontrib>Kasliwal, Mansi</creatorcontrib><creatorcontrib>Lau, Ryan</creatorcontrib><creatorcontrib>De Looze, Ilse</creatorcontrib><creatorcontrib>Marston, Anthony</creatorcontrib><creatorcontrib>Milisavljevic, Dan</creatorcontrib><creatorcontrib>O’Steen, Richard</creatorcontrib><creatorcontrib>Siebert, Matthew</creatorcontrib><creatorcontrib>Skrutskie, Michael</creatorcontrib><creatorcontrib>Smith, Nathan</creatorcontrib><creatorcontrib>Strolger, Lou</creatorcontrib><creatorcontrib>Van Dyk, Schuyler D</creatorcontrib><creatorcontrib>Wang, Qinan</creatorcontrib><creatorcontrib>Williams, Brian</creatorcontrib><creatorcontrib>Williams, Robert</creatorcontrib><creatorcontrib>Xiao, Lin</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahbandeh, Melissa</au><au>Sarangi, Arkaprabha</au><au>Temim, Tea</au><au>Szalai, Tamás</au><au>Fox, Ori D</au><au>Tinyanont, Samaporn</au><au>Dwek, Eli</au><au>Dessart, Luc</au><au>Filippenko, Alexei V</au><au>Brink, Thomas G</au><au>Foley, Ryan J</au><au>Jencson, Jacob</au><au>Pierel, Justin</au><au>Zsíros, Szanna</au><au>Rest, Armin</au><au>Zheng, WeiKang</au><au>Andrews, Jennifer</au><au>Clayton, Geoffrey C</au><au>De, Kishalay</au><au>Engesser, Michael</au><au>Gezari, Suvi</au><au>Gomez, Sebastian</au><au>Gonzaga, Shireen</au><au>Johansson, Joel</au><au>Kasliwal, Mansi</au><au>Lau, Ryan</au><au>De Looze, Ilse</au><au>Marston, Anthony</au><au>Milisavljevic, Dan</au><au>O’Steen, Richard</au><au>Siebert, Matthew</au><au>Skrutskie, Michael</au><au>Smith, Nathan</au><au>Strolger, Lou</au><au>Van Dyk, Schuyler D</au><au>Wang, Qinan</au><au>Williams, Brian</au><au>Williams, Robert</au><au>Xiao, Lin</au><au>Yang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw</atitle><date>2023</date><risdate>2023</risdate><issn>0035-8711</issn><issn>1365-2966</issn><abstract>Supernova (SN) explosions have been sought for decades as a possible source of dust in the Universe, providing the seeds of galaxies, stars, and planetary systems. SN 1987A offers one of the most promising examples of significant SN dust formation, but until the James Webb Space Telescope (JWST), instruments have traditionally lacked the sensitivity at both late times (>1 yr post-explosion) and longer wavelengths (i.e. >10 mu m) to detect analogous dust reservoirs. Here we present JWST/MIRI observations of two historic Type IIP SNe, 2004et and SN 2017eaw, at nearly 18 and 5 yr post-explosion, respectively. We fit the spectral energy distributions as functions of dust mass and temperature, from which we are able to constrain the dust geometry, origin, and heating mechanism. We place a 90 per cent confidence lower limit on the dust masses for SNe 2004et and 2017eaw of >0.014 and >4 x 10(-4) M-circle dot, respectively. More dust may exist at even colder temperatures or may be obscured by high optical depths. We conclude dust formation in the ejecta to be the most plausible and consistent scenario. The observed dust is radiatively heated to similar to 100-150 K by ongoing shock interaction with the circumstellar medium. Regardless of the best fit or heating mechanism adopted, the inferred dust mass for SN 2004et is the second highest (next to SN 1987A) mid-infrared inferred dust mass in extragalactic SNe thus far, promoting the prospect of SNe as potential significant sources of dust in the Universe.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_ghent_librecat_oai_archive_ugent_be_01HR77XCS95FZ3DFAYGGDW5W4C |
source | Oxford Journals Open Access Collection; Ghent University Academic Bibliography |
subjects | Astronomy and Astrophysics CORE-COLLAPSE SUPERNOVAE EJECTA DUST INFRARED TRANSIENTS infrared: general INTERSTELLAR DUST MIDINFRARED INSTRUMENT Physics and Astronomy PROGENITOR MASSES SN 2004ET Space and Planetary Science supernovae: general supernovae: individual: SN 2004et, SN 2017eaw TIME CIRCUMSTELLAR INTERACTION transients: supernovae WEBB-SPACE-TELESCOPE X-RAY-EMISSION |
title | JWST observations of dust reservoirs in type IIP supernovae 2004et and 2017eaw |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JWST%20observations%20of%20dust%20reservoirs%20in%20type%20IIP%20supernovae%202004et%20and%202017eaw&rft.au=Shahbandeh,%20Melissa&rft.date=2023&rft.issn=0035-8711&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_01HR77XCS95FZ3DFAYGGDW5W4C%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |