A note on Bohr’s theorem for Beurling integer systems
Given a sequence of frequencies {.n} n=1, a corresponding generalized Dirichlet series is of the form f (s) = n=1 ane-.n s. We are interested in multiplicatively generated systems, where each number e.n arises as a finite product of some given numbers {qn} n=1, 1 < qn. 8, referred to as Beurling...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Broucke, Frederik Kouroupis, Athanasios Perfekt, Karl-Mikael |
description | Given a sequence of frequencies {.n} n=1, a corresponding generalized Dirichlet series is of the form f (s) = n=1 ane-.n s. We are interested in multiplicatively generated systems, where each number e.n arises as a finite product of some given numbers {qn} n=1, 1 < qn. 8, referred to as Beurling primes. In the classical case, where.n = log n, Bohr's theorem holds: if f converges somewhere and has an analytic extension which is bounded in a half-plane {s >.}, then it actually converges uniformly in every half-plane {s >. + e}, e > 0. We prove, under very mild conditions, that given a sequence of Beurling primes, a small perturbation yields another sequence of primes such that the corresponding Beurling integers satisfy Bohr's condition, and therefore the theorem. Applying our technique in conjunction with a probabilistic method, we find a system ofBeurling primes for which bothBohr's theorem and the Riemann hypothesis are valid. This provides a counterexample to a conjecture of H. Helson concerning outer functions in Hardy spaces of generalized Dirichlet series. |
format | Article |
fullrecord | <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_01HF90YY5P51MFNG96PZNX9D7K</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_01HF90YY5P51MFNG96PZNX9D7K</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_01HF90YY5P51MFNG96PZNX9D7K3</originalsourceid><addsrcrecordid>eNpjYeA0MDAy1TW1MDbkYOAqLs4yMDAwNjAw5WQwd1TIyy9JVcjPU3DKzyh61DCzWKEkIzW_KDVXIS2_SMEptbQoJzMvXSEzryQ1PbVIobiyuCQ1t5iHgTUtMac4lRdKczO4urmGOHvopmek5pXE52QmFaUmJ5bE5ydmxicWJWdklqXGl6aDpJJS4w0MPdwsDSIjTQNMDX3d_NwtzQKi_CIsXcy9jallDgDyuE1s</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A note on Bohr’s theorem for Beurling integer systems</title><source>Ghent University Academic Bibliography</source><source>SpringerLink Journals</source><creator>Broucke, Frederik ; Kouroupis, Athanasios ; Perfekt, Karl-Mikael</creator><creatorcontrib>Broucke, Frederik ; Kouroupis, Athanasios ; Perfekt, Karl-Mikael</creatorcontrib><description>Given a sequence of frequencies {.n} n=1, a corresponding generalized Dirichlet series is of the form f (s) = n=1 ane-.n s. We are interested in multiplicatively generated systems, where each number e.n arises as a finite product of some given numbers {qn} n=1, 1 < qn. 8, referred to as Beurling primes. In the classical case, where.n = log n, Bohr's theorem holds: if f converges somewhere and has an analytic extension which is bounded in a half-plane {s >.}, then it actually converges uniformly in every half-plane {s >. + e}, e > 0. We prove, under very mild conditions, that given a sequence of Beurling primes, a small perturbation yields another sequence of primes such that the corresponding Beurling integers satisfy Bohr's condition, and therefore the theorem. Applying our technique in conjunction with a probabilistic method, we find a system ofBeurling primes for which bothBohr's theorem and the Riemann hypothesis are valid. This provides a counterexample to a conjecture of H. Helson concerning outer functions in Hardy spaces of generalized Dirichlet series.</description><identifier>ISSN: 0025-5831</identifier><identifier>ISSN: 1432-1807</identifier><language>eng</language><subject>Beurling integer systems ; Bohr's theorem ; Mathematics and Statistics</subject><creationdate>2024</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4009,27839</link.rule.ids></links><search><creatorcontrib>Broucke, Frederik</creatorcontrib><creatorcontrib>Kouroupis, Athanasios</creatorcontrib><creatorcontrib>Perfekt, Karl-Mikael</creatorcontrib><title>A note on Bohr’s theorem for Beurling integer systems</title><description>Given a sequence of frequencies {.n} n=1, a corresponding generalized Dirichlet series is of the form f (s) = n=1 ane-.n s. We are interested in multiplicatively generated systems, where each number e.n arises as a finite product of some given numbers {qn} n=1, 1 < qn. 8, referred to as Beurling primes. In the classical case, where.n = log n, Bohr's theorem holds: if f converges somewhere and has an analytic extension which is bounded in a half-plane {s >.}, then it actually converges uniformly in every half-plane {s >. + e}, e > 0. We prove, under very mild conditions, that given a sequence of Beurling primes, a small perturbation yields another sequence of primes such that the corresponding Beurling integers satisfy Bohr's condition, and therefore the theorem. Applying our technique in conjunction with a probabilistic method, we find a system ofBeurling primes for which bothBohr's theorem and the Riemann hypothesis are valid. This provides a counterexample to a conjecture of H. Helson concerning outer functions in Hardy spaces of generalized Dirichlet series.</description><subject>Beurling integer systems</subject><subject>Bohr's theorem</subject><subject>Mathematics and Statistics</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNpjYeA0MDAy1TW1MDbkYOAqLs4yMDAwNjAw5WQwd1TIyy9JVcjPU3DKzyh61DCzWKEkIzW_KDVXIS2_SMEptbQoJzMvXSEzryQ1PbVIobiyuCQ1t5iHgTUtMac4lRdKczO4urmGOHvopmek5pXE52QmFaUmJ5bE5ydmxicWJWdklqXGl6aDpJJS4w0MPdwsDSIjTQNMDX3d_NwtzQKi_CIsXcy9jallDgDyuE1s</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Broucke, Frederik</creator><creator>Kouroupis, Athanasios</creator><creator>Perfekt, Karl-Mikael</creator><scope>ADGLB</scope></search><sort><creationdate>2024</creationdate><title>A note on Bohr’s theorem for Beurling integer systems</title><author>Broucke, Frederik ; Kouroupis, Athanasios ; Perfekt, Karl-Mikael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_01HF90YY5P51MFNG96PZNX9D7K3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beurling integer systems</topic><topic>Bohr's theorem</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broucke, Frederik</creatorcontrib><creatorcontrib>Kouroupis, Athanasios</creatorcontrib><creatorcontrib>Perfekt, Karl-Mikael</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broucke, Frederik</au><au>Kouroupis, Athanasios</au><au>Perfekt, Karl-Mikael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on Bohr’s theorem for Beurling integer systems</atitle><date>2024</date><risdate>2024</risdate><issn>0025-5831</issn><issn>1432-1807</issn><abstract>Given a sequence of frequencies {.n} n=1, a corresponding generalized Dirichlet series is of the form f (s) = n=1 ane-.n s. We are interested in multiplicatively generated systems, where each number e.n arises as a finite product of some given numbers {qn} n=1, 1 < qn. 8, referred to as Beurling primes. In the classical case, where.n = log n, Bohr's theorem holds: if f converges somewhere and has an analytic extension which is bounded in a half-plane {s >.}, then it actually converges uniformly in every half-plane {s >. + e}, e > 0. We prove, under very mild conditions, that given a sequence of Beurling primes, a small perturbation yields another sequence of primes such that the corresponding Beurling integers satisfy Bohr's condition, and therefore the theorem. Applying our technique in conjunction with a probabilistic method, we find a system ofBeurling primes for which bothBohr's theorem and the Riemann hypothesis are valid. This provides a counterexample to a conjecture of H. Helson concerning outer functions in Hardy spaces of generalized Dirichlet series.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_ghent_librecat_oai_archive_ugent_be_01HF90YY5P51MFNG96PZNX9D7K |
source | Ghent University Academic Bibliography; SpringerLink Journals |
subjects | Beurling integer systems Bohr's theorem Mathematics and Statistics |
title | A note on Bohr’s theorem for Beurling integer systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20Bohr%E2%80%99s%20theorem%20for%20Beurling%20integer%20systems&rft.au=Broucke,%20Frederik&rft.date=2024&rft.issn=0025-5831&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_01HF90YY5P51MFNG96PZNX9D7K%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |