Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups
In this paper we study the global well-posedness of the following Cauchy problem on a sub-Riemannian manifold M: {u(t) -LMu =f (u), x is an element of M, t > 0, u(0, x) = u(0)(x), x is an element of M, for u(0) >= 0, where L-M is a sub-Laplacian of M. In the case when M is a connected unimodul...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ruzhansky, Michael Yessirkegenov, Nurgissa |
description | In this paper we study the global well-posedness of the following Cauchy problem on a sub-Riemannian manifold M:
{u(t) -LMu =f (u), x is an element of M, t > 0,
u(0, x) = u(0)(x), x is an element of M,
for u(0) >= 0, where L-M is a sub-Laplacian of M. In the case when M is a connected unimodular Lie group G, which has polynomial volume growth, we obtain a critical Fujita exponent, namely, we prove that all solutions of the Cauchy problem with u(0) equivalent to 0, blow up in finite time if and only if 1 < p [0, infinity) is a locally integrable function such that f (u) > K2up for some K2 > 0, we also show that the differential inequality
ut - ,Mu pound >= f (u)
does not admit any nontrivial distributional (a function u E Lploc(Q) which satisfies the differential in- equality in D'(Q)) solution u > 0 in Q := (0, oo) x G. Furthermore, in the case when G has exponential volume growth and f : [0, oo) ->[0, oo) is a continuous increasing function such that f (u) < K(1)u(p) for some K1 > 0, we prove that the Cauchy problem has a global, classical solution for 1 < p < oo and some positive u(0) E Lq(G) with 1 < q < oo. Moreover, we also discuss all these results in more general settings of sub-Riemannian manifolds M. (C) 2021 The Authors. Published by Elsevier Inc. |
format | Article |
fullrecord | <record><control><sourceid>ghent</sourceid><recordid>TN_cdi_ghent_librecat_oai_archive_ugent_be_01H25VKDTV5NR9XZBBHP4BTQ5Y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_archive_ugent_be_01H25VKDTV5NR9XZBBHP4BTQ5Y</sourcerecordid><originalsourceid>FETCH-ghent_librecat_oai_archive_ugent_be_01H25VKDTV5NR9XZBBHP4BTQ5Y3</originalsourceid><addsrcrecordid>eNqtjF1Og1AQhXnQxPqzh1mAJEBF09cqDYnGaEMa9YUMdIBpLjOVe6_pklymoMYV-HQy853zHQWzOFpEYXIzT06CU2t3URTH6XU6Cz6zA1tHUhOgbEFUQvr7aAOt0QoNWDXesYqFRgew1LNhIRygI3RA7x5_6OQYwXgbdkwWVMD6Klwz9SjCKDAmN2q29vK7vfI7dgh02KuQuGnghXvdejPqH5igHdTv7Xlw3KCxdPGbZ0G2yorbPGy7cVYargaq0ZWKXOJQd_xBpW8nVFEZxXmSbu7vik36uF68vC2X-dPVsnhOX-f_5fkCoch4bA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups</title><source>Elsevier ScienceDirect Journals Complete</source><source>Ghent University Academic Bibliography</source><creator>Ruzhansky, Michael ; Yessirkegenov, Nurgissa</creator><creatorcontrib>Ruzhansky, Michael ; Yessirkegenov, Nurgissa</creatorcontrib><description><![CDATA[In this paper we study the global well-posedness of the following Cauchy problem on a sub-Riemannian manifold M:
{u(t) -LMu =f (u), x is an element of M, t > 0,
u(0, x) = u(0)(x), x is an element of M,
for u(0) >= 0, where L-M is a sub-Laplacian of M. In the case when M is a connected unimodular Lie group G, which has polynomial volume growth, we obtain a critical Fujita exponent, namely, we prove that all solutions of the Cauchy problem with u(0) equivalent to 0, blow up in finite time if and only if 1 < p <= p(F) := 1 + 2/D when f (u) <^> up, where D is the global dimension of G. In the case 1 < p < pF and when f : [0, infinity) -> [0, infinity) is a locally integrable function such that f (u) > K2up for some K2 > 0, we also show that the differential inequality
ut - ,Mu pound >= f (u)
does not admit any nontrivial distributional (a function u E Lploc(Q) which satisfies the differential in- equality in D'(Q)) solution u > 0 in Q := (0, oo) x G. Furthermore, in the case when G has exponential volume growth and f : [0, oo) ->[0, oo) is a continuous increasing function such that f (u) < K(1)u(p) for some K1 > 0, we prove that the Cauchy problem has a global, classical solution for 1 < p < oo and some positive u(0) E Lq(G) with 1 < q < oo. Moreover, we also discuss all these results in more general settings of sub-Riemannian manifolds M. (C) 2021 The Authors. Published by Elsevier Inc.]]></description><identifier>ISSN: 1090-2732</identifier><identifier>ISSN: 0022-0396</identifier><language>eng</language><publisher>Elsevier BV</publisher><subject>Analysis ; Applied Mathematics ; Differential inequality ; Ghent Analysis & PDE center ; Global well-posedness ; Mathematics and Statistics ; Semilinear heat equation ; Sub-Laplacian ; Sub-Riemannian manifold ; Unimodular Lie group</subject><creationdate>2022</creationdate><rights>Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,4024,27860</link.rule.ids></links><search><creatorcontrib>Ruzhansky, Michael</creatorcontrib><creatorcontrib>Yessirkegenov, Nurgissa</creatorcontrib><title>Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups</title><description><![CDATA[In this paper we study the global well-posedness of the following Cauchy problem on a sub-Riemannian manifold M:
{u(t) -LMu =f (u), x is an element of M, t > 0,
u(0, x) = u(0)(x), x is an element of M,
for u(0) >= 0, where L-M is a sub-Laplacian of M. In the case when M is a connected unimodular Lie group G, which has polynomial volume growth, we obtain a critical Fujita exponent, namely, we prove that all solutions of the Cauchy problem with u(0) equivalent to 0, blow up in finite time if and only if 1 < p <= p(F) := 1 + 2/D when f (u) <^> up, where D is the global dimension of G. In the case 1 < p < pF and when f : [0, infinity) -> [0, infinity) is a locally integrable function such that f (u) > K2up for some K2 > 0, we also show that the differential inequality
ut - ,Mu pound >= f (u)
does not admit any nontrivial distributional (a function u E Lploc(Q) which satisfies the differential in- equality in D'(Q)) solution u > 0 in Q := (0, oo) x G. Furthermore, in the case when G has exponential volume growth and f : [0, oo) ->[0, oo) is a continuous increasing function such that f (u) < K(1)u(p) for some K1 > 0, we prove that the Cauchy problem has a global, classical solution for 1 < p < oo and some positive u(0) E Lq(G) with 1 < q < oo. Moreover, we also discuss all these results in more general settings of sub-Riemannian manifolds M. (C) 2021 The Authors. Published by Elsevier Inc.]]></description><subject>Analysis</subject><subject>Applied Mathematics</subject><subject>Differential inequality</subject><subject>Ghent Analysis & PDE center</subject><subject>Global well-posedness</subject><subject>Mathematics and Statistics</subject><subject>Semilinear heat equation</subject><subject>Sub-Laplacian</subject><subject>Sub-Riemannian manifold</subject><subject>Unimodular Lie group</subject><issn>1090-2732</issn><issn>0022-0396</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ADGLB</sourceid><recordid>eNqtjF1Og1AQhXnQxPqzh1mAJEBF09cqDYnGaEMa9YUMdIBpLjOVe6_pklymoMYV-HQy853zHQWzOFpEYXIzT06CU2t3URTH6XU6Cz6zA1tHUhOgbEFUQvr7aAOt0QoNWDXesYqFRgew1LNhIRygI3RA7x5_6OQYwXgbdkwWVMD6Klwz9SjCKDAmN2q29vK7vfI7dgh02KuQuGnghXvdejPqH5igHdTv7Xlw3KCxdPGbZ0G2yorbPGy7cVYargaq0ZWKXOJQd_xBpW8nVFEZxXmSbu7vik36uF68vC2X-dPVsnhOX-f_5fkCoch4bA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ruzhansky, Michael</creator><creator>Yessirkegenov, Nurgissa</creator><general>Elsevier BV</general><scope>ADGLB</scope></search><sort><creationdate>2022</creationdate><title>Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups</title><author>Ruzhansky, Michael ; Yessirkegenov, Nurgissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ghent_librecat_oai_archive_ugent_be_01H25VKDTV5NR9XZBBHP4BTQ5Y3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Applied Mathematics</topic><topic>Differential inequality</topic><topic>Ghent Analysis & PDE center</topic><topic>Global well-posedness</topic><topic>Mathematics and Statistics</topic><topic>Semilinear heat equation</topic><topic>Sub-Laplacian</topic><topic>Sub-Riemannian manifold</topic><topic>Unimodular Lie group</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruzhansky, Michael</creatorcontrib><creatorcontrib>Yessirkegenov, Nurgissa</creatorcontrib><collection>Ghent University Academic Bibliography</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruzhansky, Michael</au><au>Yessirkegenov, Nurgissa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups</atitle><date>2022</date><risdate>2022</risdate><issn>1090-2732</issn><issn>0022-0396</issn><abstract><![CDATA[In this paper we study the global well-posedness of the following Cauchy problem on a sub-Riemannian manifold M:
{u(t) -LMu =f (u), x is an element of M, t > 0,
u(0, x) = u(0)(x), x is an element of M,
for u(0) >= 0, where L-M is a sub-Laplacian of M. In the case when M is a connected unimodular Lie group G, which has polynomial volume growth, we obtain a critical Fujita exponent, namely, we prove that all solutions of the Cauchy problem with u(0) equivalent to 0, blow up in finite time if and only if 1 < p <= p(F) := 1 + 2/D when f (u) <^> up, where D is the global dimension of G. In the case 1 < p < pF and when f : [0, infinity) -> [0, infinity) is a locally integrable function such that f (u) > K2up for some K2 > 0, we also show that the differential inequality
ut - ,Mu pound >= f (u)
does not admit any nontrivial distributional (a function u E Lploc(Q) which satisfies the differential in- equality in D'(Q)) solution u > 0 in Q := (0, oo) x G. Furthermore, in the case when G has exponential volume growth and f : [0, oo) ->[0, oo) is a continuous increasing function such that f (u) < K(1)u(p) for some K1 > 0, we prove that the Cauchy problem has a global, classical solution for 1 < p < oo and some positive u(0) E Lq(G) with 1 < q < oo. Moreover, we also discuss all these results in more general settings of sub-Riemannian manifolds M. (C) 2021 The Authors. Published by Elsevier Inc.]]></abstract><pub>Elsevier BV</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-2732 |
ispartof | |
issn | 1090-2732 0022-0396 |
language | eng |
recordid | cdi_ghent_librecat_oai_archive_ugent_be_01H25VKDTV5NR9XZBBHP4BTQ5Y |
source | Elsevier ScienceDirect Journals Complete; Ghent University Academic Bibliography |
subjects | Analysis Applied Mathematics Differential inequality Ghent Analysis & PDE center Global well-posedness Mathematics and Statistics Semilinear heat equation Sub-Laplacian Sub-Riemannian manifold Unimodular Lie group |
title | Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ghent&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20non-existence%20of%20global%20solutions%20for%20semilinear%20heat%20equations%20and%20inequalities%20on%20sub-Riemannian%20manifolds,%20and%20Fujita%20exponent%20on%20unimodular%20Lie%20groups&rft.au=Ruzhansky,%20Michael&rft.date=2022&rft.issn=1090-2732&rft_id=info:doi/&rft_dat=%3Cghent%3Eoai_archive_ugent_be_01H25VKDTV5NR9XZBBHP4BTQ5Y%3C/ghent%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |