Reliability of operating window identified from process data
This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dyna...
Gespeichert in:
Veröffentlicht in: | 23rd European Symposium on Computer Aided Process Engineering 2013, Vol.32, p.625-630 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 630 |
---|---|
container_issue | |
container_start_page | 625 |
container_title | 23rd European Symposium on Computer Aided Process Engineering |
container_volume | 32 |
creator | Ihalainen, Heimo Ritala, Risto Saarela, Olli |
description | This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations. |
doi_str_mv | 10.1016/B978-0-444-63234-0.50105-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_elsev</sourceid><recordid>TN_cdi_gale_vrl_6998000117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>CX6998000117</galeid><els_id>B9780444632340501056</els_id><sourcerecordid>CX6998000117</sourcerecordid><originalsourceid>FETCH-LOGICAL-e272t-3c6c1559f628f8de35073ba28a1df620ab166034990b88d8c125e434aa7b2eb93</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhSMqWGv_gE_B99TJ5g6-aOsNCoLoc8huZktk3S27S4v_3rQV52XmnAPDzEfIDYc5B65vH5yxDJiUkmlRCMlgroCDYvqEXEK2syu5Of0XQsozMuHKADNO6gsyG4YvyOUMCGEm5O4dmxTK1KTxh3Y17TbYhzG1a7pLbex2NEVsx1QnjLTuu2-66bsKh4HGMIYrcl6HZsDZX5-Sz6fHj8ULW709vy7uVwwLU4xMVLriSrlaF7a2EYUCI8pQ2MBj9iCUXGsQ0jkorY224oVCKWQIpiywdGJKro9716FBv-0br52z-QvOTQ6XxxDzBduEvR-qhG2FMfVYjT52yXPwe35-z8-Dz2z8AU6eD_yy-gX4j1-5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reliability of operating window identified from process data</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Ihalainen, Heimo ; Ritala, Risto ; Saarela, Olli</creator><creatorcontrib>Ihalainen, Heimo ; Ritala, Risto ; Saarela, Olli</creatorcontrib><description>This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations.</description><identifier>ISSN: 1570-7946</identifier><identifier>ISBN: 0444632344</identifier><identifier>ISBN: 9780444632340</identifier><identifier>EISBN: 0444632417</identifier><identifier>EISBN: 9780444632418</identifier><identifier>DOI: 10.1016/B978-0-444-63234-0.50105-6</identifier><language>eng</language><subject>mutual information ; operating window ; Petroleum refineries ; process management ; transfer entropy ; uncertainty</subject><ispartof>23rd European Symposium on Computer Aided Process Engineering, 2013, Vol.32, p.625-630</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>127,146,775,776,780,789,25331,27902</link.rule.ids></links><search><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Ritala, Risto</creatorcontrib><creatorcontrib>Saarela, Olli</creatorcontrib><title>Reliability of operating window identified from process data</title><title>23rd European Symposium on Computer Aided Process Engineering</title><description>This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations.</description><subject>mutual information</subject><subject>operating window</subject><subject>Petroleum refineries</subject><subject>process management</subject><subject>transfer entropy</subject><subject>uncertainty</subject><issn>1570-7946</issn><isbn>0444632344</isbn><isbn>9780444632340</isbn><isbn>0444632417</isbn><isbn>9780444632418</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kFtLAzEQhSMqWGv_gE_B99TJ5g6-aOsNCoLoc8huZktk3S27S4v_3rQV52XmnAPDzEfIDYc5B65vH5yxDJiUkmlRCMlgroCDYvqEXEK2syu5Of0XQsozMuHKADNO6gsyG4YvyOUMCGEm5O4dmxTK1KTxh3Y17TbYhzG1a7pLbex2NEVsx1QnjLTuu2-66bsKh4HGMIYrcl6HZsDZX5-Sz6fHj8ULW709vy7uVwwLU4xMVLriSrlaF7a2EYUCI8pQ2MBj9iCUXGsQ0jkorY224oVCKWQIpiywdGJKro9716FBv-0br52z-QvOTQ6XxxDzBduEvR-qhG2FMfVYjT52yXPwe35-z8-Dz2z8AU6eD_yy-gX4j1-5</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Ihalainen, Heimo</creator><creator>Ritala, Risto</creator><creator>Saarela, Olli</creator><scope/></search><sort><creationdate>2013</creationdate><title>Reliability of operating window identified from process data</title><author>Ihalainen, Heimo ; Ritala, Risto ; Saarela, Olli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e272t-3c6c1559f628f8de35073ba28a1df620ab166034990b88d8c125e434aa7b2eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>mutual information</topic><topic>operating window</topic><topic>Petroleum refineries</topic><topic>process management</topic><topic>transfer entropy</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Ritala, Risto</creatorcontrib><creatorcontrib>Saarela, Olli</creatorcontrib><jtitle>23rd European Symposium on Computer Aided Process Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ihalainen, Heimo</au><au>Ritala, Risto</au><au>Saarela, Olli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability of operating window identified from process data</atitle><jtitle>23rd European Symposium on Computer Aided Process Engineering</jtitle><date>2013</date><risdate>2013</risdate><volume>32</volume><spage>625</spage><epage>630</epage><pages>625-630</pages><issn>1570-7946</issn><isbn>0444632344</isbn><isbn>9780444632340</isbn><eisbn>0444632417</eisbn><eisbn>9780444632418</eisbn><abstract>This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations.</abstract><doi>10.1016/B978-0-444-63234-0.50105-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-7946 |
ispartof | 23rd European Symposium on Computer Aided Process Engineering, 2013, Vol.32, p.625-630 |
issn | 1570-7946 |
language | eng |
recordid | cdi_gale_vrl_6998000117 |
source | O'Reilly Online Learning: Academic/Public Library Edition |
subjects | mutual information operating window Petroleum refineries process management transfer entropy uncertainty |
title | Reliability of operating window identified from process data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20of%20operating%20window%20identified%20from%20process%20data&rft.jtitle=23rd%20European%20Symposium%20on%20Computer%20Aided%20Process%20Engineering&rft.au=Ihalainen,%20Heimo&rft.date=2013&rft.volume=32&rft.spage=625&rft.epage=630&rft.pages=625-630&rft.issn=1570-7946&rft.isbn=0444632344&rft.isbn_list=9780444632340&rft_id=info:doi/10.1016/B978-0-444-63234-0.50105-6&rft_dat=%3Cgale_elsev%3ECX6998000117%3C/gale_elsev%3E%3Curl%3E%3C/url%3E&rft.eisbn=0444632417&rft.eisbn_list=9780444632418&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=CX6998000117&rft_els_id=B9780444632340501056&rfr_iscdi=true |