Reliability of operating window identified from process data

This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:23rd European Symposium on Computer Aided Process Engineering 2013, Vol.32, p.625-630
Hauptverfasser: Ihalainen, Heimo, Ritala, Risto, Saarela, Olli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 630
container_issue
container_start_page 625
container_title 23rd European Symposium on Computer Aided Process Engineering
container_volume 32
creator Ihalainen, Heimo
Ritala, Risto
Saarela, Olli
description This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations.
doi_str_mv 10.1016/B978-0-444-63234-0.50105-6
format Article
fullrecord <record><control><sourceid>gale_elsev</sourceid><recordid>TN_cdi_gale_vrl_6998000117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>CX6998000117</galeid><els_id>B9780444632340501056</els_id><sourcerecordid>CX6998000117</sourcerecordid><originalsourceid>FETCH-LOGICAL-e272t-3c6c1559f628f8de35073ba28a1df620ab166034990b88d8c125e434aa7b2eb93</originalsourceid><addsrcrecordid>eNo9kFtLAzEQhSMqWGv_gE_B99TJ5g6-aOsNCoLoc8huZktk3S27S4v_3rQV52XmnAPDzEfIDYc5B65vH5yxDJiUkmlRCMlgroCDYvqEXEK2syu5Of0XQsozMuHKADNO6gsyG4YvyOUMCGEm5O4dmxTK1KTxh3Y17TbYhzG1a7pLbex2NEVsx1QnjLTuu2-66bsKh4HGMIYrcl6HZsDZX5-Sz6fHj8ULW709vy7uVwwLU4xMVLriSrlaF7a2EYUCI8pQ2MBj9iCUXGsQ0jkorY224oVCKWQIpiywdGJKro9716FBv-0br52z-QvOTQ6XxxDzBduEvR-qhG2FMfVYjT52yXPwe35-z8-Dz2z8AU6eD_yy-gX4j1-5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reliability of operating window identified from process data</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Ihalainen, Heimo ; Ritala, Risto ; Saarela, Olli</creator><creatorcontrib>Ihalainen, Heimo ; Ritala, Risto ; Saarela, Olli</creatorcontrib><description>This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations.</description><identifier>ISSN: 1570-7946</identifier><identifier>ISBN: 0444632344</identifier><identifier>ISBN: 9780444632340</identifier><identifier>EISBN: 0444632417</identifier><identifier>EISBN: 9780444632418</identifier><identifier>DOI: 10.1016/B978-0-444-63234-0.50105-6</identifier><language>eng</language><subject>mutual information ; operating window ; Petroleum refineries ; process management ; transfer entropy ; uncertainty</subject><ispartof>23rd European Symposium on Computer Aided Process Engineering, 2013, Vol.32, p.625-630</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>127,146,775,776,780,789,25331,27902</link.rule.ids></links><search><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Ritala, Risto</creatorcontrib><creatorcontrib>Saarela, Olli</creatorcontrib><title>Reliability of operating window identified from process data</title><title>23rd European Symposium on Computer Aided Process Engineering</title><description>This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations.</description><subject>mutual information</subject><subject>operating window</subject><subject>Petroleum refineries</subject><subject>process management</subject><subject>transfer entropy</subject><subject>uncertainty</subject><issn>1570-7946</issn><isbn>0444632344</isbn><isbn>9780444632340</isbn><isbn>0444632417</isbn><isbn>9780444632418</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kFtLAzEQhSMqWGv_gE_B99TJ5g6-aOsNCoLoc8huZktk3S27S4v_3rQV52XmnAPDzEfIDYc5B65vH5yxDJiUkmlRCMlgroCDYvqEXEK2syu5Of0XQsozMuHKADNO6gsyG4YvyOUMCGEm5O4dmxTK1KTxh3Y17TbYhzG1a7pLbex2NEVsx1QnjLTuu2-66bsKh4HGMIYrcl6HZsDZX5-Sz6fHj8ULW709vy7uVwwLU4xMVLriSrlaF7a2EYUCI8pQ2MBj9iCUXGsQ0jkorY224oVCKWQIpiywdGJKro9716FBv-0br52z-QvOTQ6XxxDzBduEvR-qhG2FMfVYjT52yXPwe35-z8-Dz2z8AU6eD_yy-gX4j1-5</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Ihalainen, Heimo</creator><creator>Ritala, Risto</creator><creator>Saarela, Olli</creator><scope/></search><sort><creationdate>2013</creationdate><title>Reliability of operating window identified from process data</title><author>Ihalainen, Heimo ; Ritala, Risto ; Saarela, Olli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e272t-3c6c1559f628f8de35073ba28a1df620ab166034990b88d8c125e434aa7b2eb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>mutual information</topic><topic>operating window</topic><topic>Petroleum refineries</topic><topic>process management</topic><topic>transfer entropy</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ihalainen, Heimo</creatorcontrib><creatorcontrib>Ritala, Risto</creatorcontrib><creatorcontrib>Saarela, Olli</creatorcontrib><jtitle>23rd European Symposium on Computer Aided Process Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ihalainen, Heimo</au><au>Ritala, Risto</au><au>Saarela, Olli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability of operating window identified from process data</atitle><jtitle>23rd European Symposium on Computer Aided Process Engineering</jtitle><date>2013</date><risdate>2013</risdate><volume>32</volume><spage>625</spage><epage>630</epage><pages>625-630</pages><issn>1570-7946</issn><isbn>0444632344</isbn><isbn>9780444632340</isbn><eisbn>0444632417</eisbn><eisbn>9780444632418</eisbn><abstract>This paper discusses data-based operating windows as a tool for process management and development. In particular identification of the operating window and its uncertainty are analyzed. The operating window is determined by maximizing either the mutual information (static) or entropy transfer (dynamic). An industrial example shows that the entropy of the indicator variable is reduced to half by an operating window specified with only few variables, selected amongst over 3000 candidates. Test model based simulations suggest that such few-variable operating windows can be reliably identified from datasets having lengths of a few thousand observations.</abstract><doi>10.1016/B978-0-444-63234-0.50105-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-7946
ispartof 23rd European Symposium on Computer Aided Process Engineering, 2013, Vol.32, p.625-630
issn 1570-7946
language eng
recordid cdi_gale_vrl_6998000117
source O'Reilly Online Learning: Academic/Public Library Edition
subjects mutual information
operating window
Petroleum refineries
process management
transfer entropy
uncertainty
title Reliability of operating window identified from process data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20of%20operating%20window%20identified%20from%20process%20data&rft.jtitle=23rd%20European%20Symposium%20on%20Computer%20Aided%20Process%20Engineering&rft.au=Ihalainen,%20Heimo&rft.date=2013&rft.volume=32&rft.spage=625&rft.epage=630&rft.pages=625-630&rft.issn=1570-7946&rft.isbn=0444632344&rft.isbn_list=9780444632340&rft_id=info:doi/10.1016/B978-0-444-63234-0.50105-6&rft_dat=%3Cgale_elsev%3ECX6998000117%3C/gale_elsev%3E%3Curl%3E%3C/url%3E&rft.eisbn=0444632417&rft.eisbn_list=9780444632418&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=CX6998000117&rft_els_id=B9780444632340501056&rfr_iscdi=true