Identification of Critical Nodes for Delay Propagation in Susceptible-Exposed-Infected-Recovered Route Networks

In response to the challenges associated with forecasting the trajectory of flight delay propagation, pinpointing pivotal nodes within the route network, and the substantial costs involved in enhancing operational efficiency, this study introduces an innovative approach to identifying critical nodes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2024-11, Vol.11 (11)
Hauptverfasser: Zhang, Mingyu, Wen, Xiangxi, Wu, Minggong, Xie, Hanchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Aerospace
container_volume 11
creator Zhang, Mingyu
Wen, Xiangxi
Wu, Minggong
Xie, Hanchen
description In response to the challenges associated with forecasting the trajectory of flight delay propagation, pinpointing pivotal nodes within the route network, and the substantial costs involved in enhancing operational efficiency, this study introduces an innovative approach to identifying critical nodes that influence delay propagation across route networks. The methodology commences by establishing a route network model for East China, leveraging the principles of complex network theory. It then incorporates the SEIR (Susceptible-Exposed-Infected-Recovered) model, typically used for analyzing the dynamics of infectious disease spread, to examine the propagation of delays between routes. Subsequently, the approach employs a GA to identify key nodes, which are then compared against those identified by network topology indices. The simulation outcomes demonstrate that the GA’s identification of key nodes offers superior insights into the overall network’s susceptibility to infection, thereby presenting operational managers with novel perspectives for analyzing the spread of flight delays.
doi_str_mv 10.3390/aerospace11110878
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A817928957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A817928957</galeid><sourcerecordid>A817928957</sourcerecordid><originalsourceid>FETCH-LOGICAL-g677-facb0ab87a2dea0f4b2fbd6d09b039bea54a4755d8d669313d67ca3f30a8e1a73</originalsourceid><addsrcrecordid>eNptjM1OwzAQhH0Aiar0AbhZ4pxix0nsHKtSoFJVUOm9WtvrypDGUezy8_YNKgcOzBx2ZvXtEnLD2VSImt0B9iF2YJAPYkqqCzLK87zKCsHZFZnE-MYG1VwoVo5IWFpsk3feQPKhpcHRee_TUBu6DhYjdaGn99jAN33pQwf7M-db-nqMBrvkdYPZ4qsLEW22bB2aNIQNmvCBPVq6CceEdI3pM_Tv8ZpcOmgiTn7nmGwfFtv5U7Z6flzOZ6tsX0mZOTCagVYScovAXKFzp21lWa2ZqDVCWUAhy9IqW1W14MJW0oBwgoFCDlKMye357R4a3PnWhdSDOfhodjPFZZ2ruvyhpv9Qgy0evAktOj_s_xycABhybcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of Critical Nodes for Delay Propagation in Susceptible-Exposed-Infected-Recovered Route Networks</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Zhang, Mingyu ; Wen, Xiangxi ; Wu, Minggong ; Xie, Hanchen</creator><creatorcontrib>Zhang, Mingyu ; Wen, Xiangxi ; Wu, Minggong ; Xie, Hanchen</creatorcontrib><description>In response to the challenges associated with forecasting the trajectory of flight delay propagation, pinpointing pivotal nodes within the route network, and the substantial costs involved in enhancing operational efficiency, this study introduces an innovative approach to identifying critical nodes that influence delay propagation across route networks. The methodology commences by establishing a route network model for East China, leveraging the principles of complex network theory. It then incorporates the SEIR (Susceptible-Exposed-Infected-Recovered) model, typically used for analyzing the dynamics of infectious disease spread, to examine the propagation of delays between routes. Subsequently, the approach employs a GA to identify key nodes, which are then compared against those identified by network topology indices. The simulation outcomes demonstrate that the GA’s identification of key nodes offers superior insights into the overall network’s susceptibility to infection, thereby presenting operational managers with novel perspectives for analyzing the spread of flight delays.</description><identifier>ISSN: 2226-4310</identifier><identifier>DOI: 10.3390/aerospace11110878</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Algorithms ; Analysis ; Disease susceptibility ; Disease transmission ; Genetic research ; Health aspects ; Social networks</subject><ispartof>Aerospace, 2024-11, Vol.11 (11)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Mingyu</creatorcontrib><creatorcontrib>Wen, Xiangxi</creatorcontrib><creatorcontrib>Wu, Minggong</creatorcontrib><creatorcontrib>Xie, Hanchen</creatorcontrib><title>Identification of Critical Nodes for Delay Propagation in Susceptible-Exposed-Infected-Recovered Route Networks</title><title>Aerospace</title><description>In response to the challenges associated with forecasting the trajectory of flight delay propagation, pinpointing pivotal nodes within the route network, and the substantial costs involved in enhancing operational efficiency, this study introduces an innovative approach to identifying critical nodes that influence delay propagation across route networks. The methodology commences by establishing a route network model for East China, leveraging the principles of complex network theory. It then incorporates the SEIR (Susceptible-Exposed-Infected-Recovered) model, typically used for analyzing the dynamics of infectious disease spread, to examine the propagation of delays between routes. Subsequently, the approach employs a GA to identify key nodes, which are then compared against those identified by network topology indices. The simulation outcomes demonstrate that the GA’s identification of key nodes offers superior insights into the overall network’s susceptibility to infection, thereby presenting operational managers with novel perspectives for analyzing the spread of flight delays.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Disease susceptibility</subject><subject>Disease transmission</subject><subject>Genetic research</subject><subject>Health aspects</subject><subject>Social networks</subject><issn>2226-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptjM1OwzAQhH0Aiar0AbhZ4pxix0nsHKtSoFJVUOm9WtvrypDGUezy8_YNKgcOzBx2ZvXtEnLD2VSImt0B9iF2YJAPYkqqCzLK87zKCsHZFZnE-MYG1VwoVo5IWFpsk3feQPKhpcHRee_TUBu6DhYjdaGn99jAN33pQwf7M-db-nqMBrvkdYPZ4qsLEW22bB2aNIQNmvCBPVq6CceEdI3pM_Tv8ZpcOmgiTn7nmGwfFtv5U7Z6flzOZ6tsX0mZOTCagVYScovAXKFzp21lWa2ZqDVCWUAhy9IqW1W14MJW0oBwgoFCDlKMye357R4a3PnWhdSDOfhodjPFZZ2ruvyhpv9Qgy0evAktOj_s_xycABhybcw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Mingyu</creator><creator>Wen, Xiangxi</creator><creator>Wu, Minggong</creator><creator>Xie, Hanchen</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20241101</creationdate><title>Identification of Critical Nodes for Delay Propagation in Susceptible-Exposed-Infected-Recovered Route Networks</title><author>Zhang, Mingyu ; Wen, Xiangxi ; Wu, Minggong ; Xie, Hanchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g677-facb0ab87a2dea0f4b2fbd6d09b039bea54a4755d8d669313d67ca3f30a8e1a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Disease susceptibility</topic><topic>Disease transmission</topic><topic>Genetic research</topic><topic>Health aspects</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mingyu</creatorcontrib><creatorcontrib>Wen, Xiangxi</creatorcontrib><creatorcontrib>Wu, Minggong</creatorcontrib><creatorcontrib>Xie, Hanchen</creatorcontrib><jtitle>Aerospace</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Mingyu</au><au>Wen, Xiangxi</au><au>Wu, Minggong</au><au>Xie, Hanchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Critical Nodes for Delay Propagation in Susceptible-Exposed-Infected-Recovered Route Networks</atitle><jtitle>Aerospace</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><issn>2226-4310</issn><abstract>In response to the challenges associated with forecasting the trajectory of flight delay propagation, pinpointing pivotal nodes within the route network, and the substantial costs involved in enhancing operational efficiency, this study introduces an innovative approach to identifying critical nodes that influence delay propagation across route networks. The methodology commences by establishing a route network model for East China, leveraging the principles of complex network theory. It then incorporates the SEIR (Susceptible-Exposed-Infected-Recovered) model, typically used for analyzing the dynamics of infectious disease spread, to examine the propagation of delays between routes. Subsequently, the approach employs a GA to identify key nodes, which are then compared against those identified by network topology indices. The simulation outcomes demonstrate that the GA’s identification of key nodes offers superior insights into the overall network’s susceptibility to infection, thereby presenting operational managers with novel perspectives for analyzing the spread of flight delays.</abstract><pub>MDPI AG</pub><doi>10.3390/aerospace11110878</doi></addata></record>
fulltext fulltext
identifier ISSN: 2226-4310
ispartof Aerospace, 2024-11, Vol.11 (11)
issn 2226-4310
language eng
recordid cdi_gale_infotracmisc_A817928957
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Algorithms
Analysis
Disease susceptibility
Disease transmission
Genetic research
Health aspects
Social networks
title Identification of Critical Nodes for Delay Propagation in Susceptible-Exposed-Infected-Recovered Route Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Critical%20Nodes%20for%20Delay%20Propagation%20in%20Susceptible-Exposed-Infected-Recovered%20Route%20Networks&rft.jtitle=Aerospace&rft.au=Zhang,%20Mingyu&rft.date=2024-11-01&rft.volume=11&rft.issue=11&rft.issn=2226-4310&rft_id=info:doi/10.3390/aerospace11110878&rft_dat=%3Cgale%3EA817928957%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A817928957&rfr_iscdi=true