Enhanced Organics Removal Using 3D/GAC/O[sub.3] for N-Containing Organic Pharmaceutical Wastewater: Accounting for Improved Biodegradability and Optimization of Operating Parameters by Response Surface Methodology
Pharmaceutical industry effluents often contain high concentrations of refractory organic solvents, chemical oxygen demand (COD), and total dissolved solids (TDSs). These wastewaters, including N-containing organic solvents known for their persistence and toxicity, pose significant environmental cha...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-11, Vol.16 (21) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Water (Basel) |
container_volume | 16 |
creator | Goh, Jun Wei Tan, Raphael Jun Hao Wu, Weiyi Huang, Zhaohong Ong, Say Leong Hu, Jiangyong |
description | Pharmaceutical industry effluents often contain high concentrations of refractory organic solvents, chemical oxygen demand (COD), and total dissolved solids (TDSs). These wastewaters, including N-containing organic solvents known for their persistence and toxicity, pose significant environmental challenges. The study evaluated the efficacy of 3D/Granular Activated Carbon (GAC)/O[sub.3] treatment compared to linear process additions when treating real pharmaceutical wastewater, and revealed a 2.73-fold enhancement in COD mineralization. The process primarily involves the direct oxidation of monoprotic organic acids found in real pharmaceutical effluents, such as acetic and formic acid, crucially influencing mineralization rates. Optimal conditions determined via the response surface methodology were 125 g/L GAC, 30 mA/cm[sup.2] , and 75 mg/L O[sub.3] , achieving high total organic carbon (TOC) and COD removal efficiencies of 87.19 ± 0.19% and 89.67 ± 0.32%, respectively (R[sup.2] > 0.9), during verification runs. Current density emerged as the key parameter for organic abatement, aligning with the emphasis on direct oxidation at the anode surface. This integrated approach enhances biodegradability (BOD[sub.5] /COD) and reduces acute toxicity associated with persistent N-containing solvents, demonstrating promising applications in pharmaceutical wastewater treatment. |
doi_str_mv | 10.3390/w16213138 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A815422774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815422774</galeid><sourcerecordid>A815422774</sourcerecordid><originalsourceid>FETCH-LOGICAL-g674-c9068e949ed405c7c64665eea217210382b21de3392baff8a81f687fdccfcb313</originalsourceid><addsrcrecordid>eNptkM1OwzAMxysEEgg48AaROHdr0qxNuY0BAwkY4kMcEEJu6nRBbTIlGWi8J-9DBhw4YB_8of_PtpwkBzQb5HmVDd9pwWhOc7GR7LCszFPOOd38k28n-96_ZtF4JcQo20k-T80cjMSGzFwLRktPbrG3b9CRB69NS_KT4XQ8Gc6e_LIe5M9EWUeu04k1AbRZC345cjMH14PEZdAy0o_gA75DQHdExlLapQlr9Rq_6BfOvsWVx9o22DpooNadDisCJt6xCLrXHxC0NcSqWKODb_YGHPQYJ3pSr-KZfmGNR3K3dCruJVcY5raxnW1Xe8mWgs7j_m_cTe7PTu8n5-nlbHoxGV-mbVHyVFZZIbDiFTY8G8lSFrwoRojAaMlolgtWM9pgfC2rQSkBgqpClKqRUsk6_nk3OfwZ20KHL9ooGxzIXnv5MhZ0xBkrSx5Vg39U0RvstbQGlY79P8AX30eQbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Organics Removal Using 3D/GAC/O[sub.3] for N-Containing Organic Pharmaceutical Wastewater: Accounting for Improved Biodegradability and Optimization of Operating Parameters by Response Surface Methodology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Goh, Jun Wei ; Tan, Raphael Jun Hao ; Wu, Weiyi ; Huang, Zhaohong ; Ong, Say Leong ; Hu, Jiangyong</creator><creatorcontrib>Goh, Jun Wei ; Tan, Raphael Jun Hao ; Wu, Weiyi ; Huang, Zhaohong ; Ong, Say Leong ; Hu, Jiangyong</creatorcontrib><description>Pharmaceutical industry effluents often contain high concentrations of refractory organic solvents, chemical oxygen demand (COD), and total dissolved solids (TDSs). These wastewaters, including N-containing organic solvents known for their persistence and toxicity, pose significant environmental challenges. The study evaluated the efficacy of 3D/Granular Activated Carbon (GAC)/O[sub.3] treatment compared to linear process additions when treating real pharmaceutical wastewater, and revealed a 2.73-fold enhancement in COD mineralization. The process primarily involves the direct oxidation of monoprotic organic acids found in real pharmaceutical effluents, such as acetic and formic acid, crucially influencing mineralization rates. Optimal conditions determined via the response surface methodology were 125 g/L GAC, 30 mA/cm[sup.2] , and 75 mg/L O[sub.3] , achieving high total organic carbon (TOC) and COD removal efficiencies of 87.19 ± 0.19% and 89.67 ± 0.32%, respectively (R[sup.2] > 0.9), during verification runs. Current density emerged as the key parameter for organic abatement, aligning with the emphasis on direct oxidation at the anode surface. This integrated approach enhances biodegradability (BOD[sub.5] /COD) and reduces acute toxicity associated with persistent N-containing solvents, demonstrating promising applications in pharmaceutical wastewater treatment.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16213138</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Purification ; Sewage</subject><ispartof>Water (Basel), 2024-11, Vol.16 (21)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Goh, Jun Wei</creatorcontrib><creatorcontrib>Tan, Raphael Jun Hao</creatorcontrib><creatorcontrib>Wu, Weiyi</creatorcontrib><creatorcontrib>Huang, Zhaohong</creatorcontrib><creatorcontrib>Ong, Say Leong</creatorcontrib><creatorcontrib>Hu, Jiangyong</creatorcontrib><title>Enhanced Organics Removal Using 3D/GAC/O[sub.3] for N-Containing Organic Pharmaceutical Wastewater: Accounting for Improved Biodegradability and Optimization of Operating Parameters by Response Surface Methodology</title><title>Water (Basel)</title><description>Pharmaceutical industry effluents often contain high concentrations of refractory organic solvents, chemical oxygen demand (COD), and total dissolved solids (TDSs). These wastewaters, including N-containing organic solvents known for their persistence and toxicity, pose significant environmental challenges. The study evaluated the efficacy of 3D/Granular Activated Carbon (GAC)/O[sub.3] treatment compared to linear process additions when treating real pharmaceutical wastewater, and revealed a 2.73-fold enhancement in COD mineralization. The process primarily involves the direct oxidation of monoprotic organic acids found in real pharmaceutical effluents, such as acetic and formic acid, crucially influencing mineralization rates. Optimal conditions determined via the response surface methodology were 125 g/L GAC, 30 mA/cm[sup.2] , and 75 mg/L O[sub.3] , achieving high total organic carbon (TOC) and COD removal efficiencies of 87.19 ± 0.19% and 89.67 ± 0.32%, respectively (R[sup.2] > 0.9), during verification runs. Current density emerged as the key parameter for organic abatement, aligning with the emphasis on direct oxidation at the anode surface. This integrated approach enhances biodegradability (BOD[sub.5] /COD) and reduces acute toxicity associated with persistent N-containing solvents, demonstrating promising applications in pharmaceutical wastewater treatment.</description><subject>Purification</subject><subject>Sewage</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptkM1OwzAMxysEEgg48AaROHdr0qxNuY0BAwkY4kMcEEJu6nRBbTIlGWi8J-9DBhw4YB_8of_PtpwkBzQb5HmVDd9pwWhOc7GR7LCszFPOOd38k28n-96_ZtF4JcQo20k-T80cjMSGzFwLRktPbrG3b9CRB69NS_KT4XQ8Gc6e_LIe5M9EWUeu04k1AbRZC345cjMH14PEZdAy0o_gA75DQHdExlLapQlr9Rq_6BfOvsWVx9o22DpooNadDisCJt6xCLrXHxC0NcSqWKODb_YGHPQYJ3pSr-KZfmGNR3K3dCruJVcY5raxnW1Xe8mWgs7j_m_cTe7PTu8n5-nlbHoxGV-mbVHyVFZZIbDiFTY8G8lSFrwoRojAaMlolgtWM9pgfC2rQSkBgqpClKqRUsk6_nk3OfwZ20KHL9ooGxzIXnv5MhZ0xBkrSx5Vg39U0RvstbQGlY79P8AX30eQbw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Goh, Jun Wei</creator><creator>Tan, Raphael Jun Hao</creator><creator>Wu, Weiyi</creator><creator>Huang, Zhaohong</creator><creator>Ong, Say Leong</creator><creator>Hu, Jiangyong</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20241101</creationdate><title>Enhanced Organics Removal Using 3D/GAC/O[sub.3] for N-Containing Organic Pharmaceutical Wastewater: Accounting for Improved Biodegradability and Optimization of Operating Parameters by Response Surface Methodology</title><author>Goh, Jun Wei ; Tan, Raphael Jun Hao ; Wu, Weiyi ; Huang, Zhaohong ; Ong, Say Leong ; Hu, Jiangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g674-c9068e949ed405c7c64665eea217210382b21de3392baff8a81f687fdccfcb313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Purification</topic><topic>Sewage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goh, Jun Wei</creatorcontrib><creatorcontrib>Tan, Raphael Jun Hao</creatorcontrib><creatorcontrib>Wu, Weiyi</creatorcontrib><creatorcontrib>Huang, Zhaohong</creatorcontrib><creatorcontrib>Ong, Say Leong</creatorcontrib><creatorcontrib>Hu, Jiangyong</creatorcontrib><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goh, Jun Wei</au><au>Tan, Raphael Jun Hao</au><au>Wu, Weiyi</au><au>Huang, Zhaohong</au><au>Ong, Say Leong</au><au>Hu, Jiangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Organics Removal Using 3D/GAC/O[sub.3] for N-Containing Organic Pharmaceutical Wastewater: Accounting for Improved Biodegradability and Optimization of Operating Parameters by Response Surface Methodology</atitle><jtitle>Water (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Pharmaceutical industry effluents often contain high concentrations of refractory organic solvents, chemical oxygen demand (COD), and total dissolved solids (TDSs). These wastewaters, including N-containing organic solvents known for their persistence and toxicity, pose significant environmental challenges. The study evaluated the efficacy of 3D/Granular Activated Carbon (GAC)/O[sub.3] treatment compared to linear process additions when treating real pharmaceutical wastewater, and revealed a 2.73-fold enhancement in COD mineralization. The process primarily involves the direct oxidation of monoprotic organic acids found in real pharmaceutical effluents, such as acetic and formic acid, crucially influencing mineralization rates. Optimal conditions determined via the response surface methodology were 125 g/L GAC, 30 mA/cm[sup.2] , and 75 mg/L O[sub.3] , achieving high total organic carbon (TOC) and COD removal efficiencies of 87.19 ± 0.19% and 89.67 ± 0.32%, respectively (R[sup.2] > 0.9), during verification runs. Current density emerged as the key parameter for organic abatement, aligning with the emphasis on direct oxidation at the anode surface. This integrated approach enhances biodegradability (BOD[sub.5] /COD) and reduces acute toxicity associated with persistent N-containing solvents, demonstrating promising applications in pharmaceutical wastewater treatment.</abstract><pub>MDPI AG</pub><doi>10.3390/w16213138</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2024-11, Vol.16 (21) |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_gale_infotracmisc_A815422774 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Purification Sewage |
title | Enhanced Organics Removal Using 3D/GAC/O[sub.3] for N-Containing Organic Pharmaceutical Wastewater: Accounting for Improved Biodegradability and Optimization of Operating Parameters by Response Surface Methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Organics%20Removal%20Using%203D/GAC/O%5Bsub.3%5D%20for%20N-Containing%20Organic%20Pharmaceutical%20Wastewater:%20Accounting%20for%20Improved%20Biodegradability%20and%20Optimization%20of%20Operating%20Parameters%20by%20Response%20Surface%20Methodology&rft.jtitle=Water%20(Basel)&rft.au=Goh,%20Jun%20Wei&rft.date=2024-11-01&rft.volume=16&rft.issue=21&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16213138&rft_dat=%3Cgale%3EA815422774%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A815422774&rfr_iscdi=true |