Morphological classification of radio galaxies with Wasserstein generative adversarial network-supported augmentation

Machine learning techniques that perform morphological classification of astronomical sources often suffer from a scarcity of labelled training data. Here, we focus on the case of supervised deep learning models for the morphological classification of radio galaxies, which is particularly topical fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RAS techniques and instruments 2023-01, Vol.2 (1), p.264-277
Hauptverfasser: Rustige, Lennart, Kummer, Janis, Griese, Florian, Borras, Kerstin, Bruggen, Marcus, Connor, Patrick L.S, Gaede, Frank, Kasieczka, Gregor, Knopp, Tobias, Schleper, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!