Longitudinal and Transverse [sup.1]H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T

The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of [sup.1]H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln[sup.3+]) can become very strong. Longitudinal and transverse [sup.1]H NMRD for Gd[sup.3+], Dy[sup.3+]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-10, Vol.29 (20)
Hauptverfasser: Nasser Din, Rami, Venu, Aiswarya Chalikunnath, Rudszuck, Thomas, Vallet, Alicia, Favier, Adrien, Powell, Annie K, Guthausen, Gisela, Ibrahim, Masooma, Krämer, Steffen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Molecules (Basel, Switzerland)
container_volume 29
creator Nasser Din, Rami
Venu, Aiswarya Chalikunnath
Rudszuck, Thomas
Vallet, Alicia
Favier, Adrien
Powell, Annie K
Guthausen, Gisela
Ibrahim, Masooma
Krämer, Steffen
description The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of [sup.1]H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln[sup.3+]) can become very strong. Longitudinal and transverse [sup.1]H NMRD for Gd[sup.3+], Dy[sup.3+], Er[sup.3+] and Ho[sup.3+] were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the [sup.1]H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy[sup.3+], Er[sup.3+] and Ho[sup.3+]. Our findings provide a solid methodological basis and valuable quantitative insights for future high-frequency NMRD studies, enhancing the measurement accuracy and applicability of PRE models for paramagnetic ions in aqueous solutions.
doi_str_mv 10.3390/molecules29204956
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A814404343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814404343</galeid><sourcerecordid>A814404343</sourcerecordid><originalsourceid>FETCH-LOGICAL-g673-45ed049418dd82ca80699ce7e23037ec868358d533b317928845a5b352aa3ccc3</originalsourceid><addsrcrecordid>eNptj0FLw0AQhYMoWKs_wNuA56S7mU2yOZaibSEqaG4iZbuZxJV0t2aTIv4Af7cBPfQgc5jvDe89mCC45ixCzNls51rSQ0s-zmMm8iQ9CSZcxCzEUZ0e8Xlw4f07YzEXPJkE34WzjemHyljVgrIVlJ2y_kCdJ3jxwz7iryt4GHRLqoN71VjqjYYn8s4qq2mkVn2ag-kNeXA1FMr2b8qaimDtrAdjYf4xkBs8PLt26I2zMOyhd8AjAcvV1wwRysvgrFatp6u_PQ3Ku9tysQqLx-V6MS_CJs0wFAlV4wuCy6qSsVaSpXmuKaMYGWakZSoxkVWCuEWe5bGUIlHJFpNYKdRa4zS4-a1tVEsbY2vXd0rvjNebueRCMIECR1f0j2ucinZGO0u1Ge9HgR_6iHNS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Longitudinal and Transverse [sup.1]H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Nasser Din, Rami ; Venu, Aiswarya Chalikunnath ; Rudszuck, Thomas ; Vallet, Alicia ; Favier, Adrien ; Powell, Annie K ; Guthausen, Gisela ; Ibrahim, Masooma ; Krämer, Steffen</creator><creatorcontrib>Nasser Din, Rami ; Venu, Aiswarya Chalikunnath ; Rudszuck, Thomas ; Vallet, Alicia ; Favier, Adrien ; Powell, Annie K ; Guthausen, Gisela ; Ibrahim, Masooma ; Krämer, Steffen</creatorcontrib><description>The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of [sup.1]H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln[sup.3+]) can become very strong. Longitudinal and transverse [sup.1]H NMRD for Gd[sup.3+], Dy[sup.3+], Er[sup.3+] and Ho[sup.3+] were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the [sup.1]H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy[sup.3+], Er[sup.3+] and Ho[sup.3+]. Our findings provide a solid methodological basis and valuable quantitative insights for future high-frequency NMRD studies, enhancing the measurement accuracy and applicability of PRE models for paramagnetic ions in aqueous solutions.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules29204956</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Magnetic fields ; Rare earth metals ; Superconductors</subject><ispartof>Molecules (Basel, Switzerland), 2024-10, Vol.29 (20)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Nasser Din, Rami</creatorcontrib><creatorcontrib>Venu, Aiswarya Chalikunnath</creatorcontrib><creatorcontrib>Rudszuck, Thomas</creatorcontrib><creatorcontrib>Vallet, Alicia</creatorcontrib><creatorcontrib>Favier, Adrien</creatorcontrib><creatorcontrib>Powell, Annie K</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><creatorcontrib>Ibrahim, Masooma</creatorcontrib><creatorcontrib>Krämer, Steffen</creatorcontrib><title>Longitudinal and Transverse [sup.1]H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T</title><title>Molecules (Basel, Switzerland)</title><description>The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of [sup.1]H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln[sup.3+]) can become very strong. Longitudinal and transverse [sup.1]H NMRD for Gd[sup.3+], Dy[sup.3+], Er[sup.3+] and Ho[sup.3+] were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the [sup.1]H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy[sup.3+], Er[sup.3+] and Ho[sup.3+]. Our findings provide a solid methodological basis and valuable quantitative insights for future high-frequency NMRD studies, enhancing the measurement accuracy and applicability of PRE models for paramagnetic ions in aqueous solutions.</description><subject>Magnetic fields</subject><subject>Rare earth metals</subject><subject>Superconductors</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptj0FLw0AQhYMoWKs_wNuA56S7mU2yOZaibSEqaG4iZbuZxJV0t2aTIv4Af7cBPfQgc5jvDe89mCC45ixCzNls51rSQ0s-zmMm8iQ9CSZcxCzEUZ0e8Xlw4f07YzEXPJkE34WzjemHyljVgrIVlJ2y_kCdJ3jxwz7iryt4GHRLqoN71VjqjYYn8s4qq2mkVn2ag-kNeXA1FMr2b8qaimDtrAdjYf4xkBs8PLt26I2zMOyhd8AjAcvV1wwRysvgrFatp6u_PQ3Ku9tysQqLx-V6MS_CJs0wFAlV4wuCy6qSsVaSpXmuKaMYGWakZSoxkVWCuEWe5bGUIlHJFpNYKdRa4zS4-a1tVEsbY2vXd0rvjNebueRCMIECR1f0j2ucinZGO0u1Ge9HgR_6iHNS</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Nasser Din, Rami</creator><creator>Venu, Aiswarya Chalikunnath</creator><creator>Rudszuck, Thomas</creator><creator>Vallet, Alicia</creator><creator>Favier, Adrien</creator><creator>Powell, Annie K</creator><creator>Guthausen, Gisela</creator><creator>Ibrahim, Masooma</creator><creator>Krämer, Steffen</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20241001</creationdate><title>Longitudinal and Transverse [sup.1]H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T</title><author>Nasser Din, Rami ; Venu, Aiswarya Chalikunnath ; Rudszuck, Thomas ; Vallet, Alicia ; Favier, Adrien ; Powell, Annie K ; Guthausen, Gisela ; Ibrahim, Masooma ; Krämer, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g673-45ed049418dd82ca80699ce7e23037ec868358d533b317928845a5b352aa3ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Magnetic fields</topic><topic>Rare earth metals</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasser Din, Rami</creatorcontrib><creatorcontrib>Venu, Aiswarya Chalikunnath</creatorcontrib><creatorcontrib>Rudszuck, Thomas</creatorcontrib><creatorcontrib>Vallet, Alicia</creatorcontrib><creatorcontrib>Favier, Adrien</creatorcontrib><creatorcontrib>Powell, Annie K</creatorcontrib><creatorcontrib>Guthausen, Gisela</creatorcontrib><creatorcontrib>Ibrahim, Masooma</creatorcontrib><creatorcontrib>Krämer, Steffen</creatorcontrib><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasser Din, Rami</au><au>Venu, Aiswarya Chalikunnath</au><au>Rudszuck, Thomas</au><au>Vallet, Alicia</au><au>Favier, Adrien</au><au>Powell, Annie K</au><au>Guthausen, Gisela</au><au>Ibrahim, Masooma</au><au>Krämer, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal and Transverse [sup.1]H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>29</volume><issue>20</issue><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of [sup.1]H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln[sup.3+]) can become very strong. Longitudinal and transverse [sup.1]H NMRD for Gd[sup.3+], Dy[sup.3+], Er[sup.3+] and Ho[sup.3+] were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the [sup.1]H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy[sup.3+], Er[sup.3+] and Ho[sup.3+]. Our findings provide a solid methodological basis and valuable quantitative insights for future high-frequency NMRD studies, enhancing the measurement accuracy and applicability of PRE models for paramagnetic ions in aqueous solutions.</abstract><pub>MDPI AG</pub><doi>10.3390/molecules29204956</doi></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2024-10, Vol.29 (20)
issn 1420-3049
1420-3049
language eng
recordid cdi_gale_infotracmisc_A814404343
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Magnetic fields
Rare earth metals
Superconductors
title Longitudinal and Transverse [sup.1]H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20and%20Transverse%20%5Bsup.1%5DH%20Nuclear%20Magnetic%20Resonance%20Relaxivities%20of%20Lanthanide%20Ions%20in%20Aqueous%20Solution%20up%20to%201.4%20GHz/33%20T&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Nasser%20Din,%20Rami&rft.date=2024-10-01&rft.volume=29&rft.issue=20&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules29204956&rft_dat=%3Cgale%3EA814404343%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A814404343&rfr_iscdi=true