Machine learning for ranking multivariate variables in cattle breeds raised in Paraguayan wetlands /Aprendizado de maquina para classificacao de variaveis multivariadas em racas bovinas criadas em pantanos do Paraguai

This study focuses on the performance of cows for meat production raised in the wetlands of Paraguay, examining five cattle genotypes: Brahman, Brangus, and Nelore, as well as two local breeds at risk of extinction. The main objective is to identify and rank phenotypic variables, including blood, cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista brasileira de engenharia agrícola e ambiental 2025-01, Vol.29 (1), p.1
Hauptverfasser: Pereira, Walter E, Centurion, Liz M, Valdez, Carolina, Ma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Revista brasileira de engenharia agrícola e ambiental
container_volume 29
creator Pereira, Walter E
Centurion, Liz M
Valdez, Carolina
Ma
description This study focuses on the performance of cows for meat production raised in the wetlands of Paraguay, examining five cattle genotypes: Brahman, Brangus, and Nelore, as well as two local breeds at risk of extinction. The main objective is to identify and rank phenotypic variables, including blood, clinical, hair, and health variables, demonstrating causal linkage with the live weight of the cows analyzed. Initially, high correlations were identified between different variables included in this study; then, using advanced Machine learning (ML) techniques and the application of Shapley additive explanations (SHAP), a deeper understanding was provided of the factors strongly associated with adaptability in these environments, and, therefore, the respective zootechnical performance. The association between cattle genotypic components linked with the season of the year proved to be the most influential factor on cattle live weight. Variables such as hair length, hematocrit, phosphatase, phosphorus, creatine phosphokinase, creatinine, protein, cortisol, calcium, and the presence of endoparasites were highlighted, demonstrating their hierarchical importance for animal selection. ML models are effective tools for establishing hierarchies ofrelevance in complex phenotypic multivariable, which is crucial in breeding programs for different zootechnical species and in special and specific environments like wetlands. Key words: cattle adaptability in wetlands, SHAP, phenotypic variables, blood variables Este estudo foca no desempenho de vacas para producao de carne, criadas nos pantanos do Paraguai, examinando cinco genotipos bovinos; Brahman, Brangus, Nelore, bem como duas racas locais em risco de extincao. O principal objetivo e identificar e classificar variaveis fenotipicas que incluem variaveis sanguineas, clinicas, de pelagem e saude, demonstrando ligacao causal com o peso vivo das vacas analisadas. Inicialmente, foram identificadas correlacoes elevadas entre diferentes variaveis incluidas neste estudo, e, entao, utilizando tecnicas avancadas de aprendizado de maquina e a aplicacao de explicacoes aditivas de Shapley (SHAP), foi proporcionado um entendimento mais profundo dos fatores fortemente associados a adaptabilidade nestes ambientes, e, portanto, o respectivo desempenho zootecnico. A associacao entre o componente genotipico bovino ligado a estacao do ano mostrou ser o fator influente mais predominante sobre o peso vivo bovino. Variaveis como comprimento do pe
doi_str_mv 10.1590/1807-1929/agriambi.v29n1e283168
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A810691087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810691087</galeid><sourcerecordid>A810691087</sourcerecordid><originalsourceid>FETCH-LOGICAL-g677-f8a8375321624e467b3241f93c233ffc86cd3b7f7109a35af55c932431262ddf3</originalsourceid><addsrcrecordid>eNptjs9OwzAMxnsACRi8QyQOnLo1SZu0xwnxTxqCA3fkJk4xtOlouiF4U96GbExiB-SDLX8_f5-T5IJnU15U2YyXmU55JaoZNANBV9N0LSrPUZSSq_IgOeY5L9JcKnWUnITwmmWF5kodJ9_3YF7II2sRBk--Ya4f2AD-bTN3q3akNUTLEdm21y0GRp4ZGMcWWT0g2hB5Cmg3-0cYoFnBJ3j2gWMLPqqz-XJAb-kLbM8ssg7eV-SBLSPLTAshkCMDBrbqNmaNFPbSLQSGXYwxcaj7dbwOzPwJS_Aj-D6wGLD7gE6TQwdtwLNdnyRP11dPl7fp4uHm7nK-SBuldepKKKUupOBK5JgrXUuRc1dJI6R0zpTKWFlrp3lWgSzAFYWpIiK5UMJaJyfJ-a9tAy0-k3f9GN_sKJjneckzVfGs1JGa_kPFstiR6T06ivu9gx8N65a1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning for ranking multivariate variables in cattle breeds raised in Paraguayan wetlands /Aprendizado de maquina para classificacao de variaveis multivariadas em racas bovinas criadas em pantanos do Paraguai</title><source>EZB Electronic Journals Library</source><creator>Pereira, Walter E ; Centurion, Liz M ; Valdez, Carolina ; Ma</creator><creatorcontrib>Pereira, Walter E ; Centurion, Liz M ; Valdez, Carolina ; Ma</creatorcontrib><description>This study focuses on the performance of cows for meat production raised in the wetlands of Paraguay, examining five cattle genotypes: Brahman, Brangus, and Nelore, as well as two local breeds at risk of extinction. The main objective is to identify and rank phenotypic variables, including blood, clinical, hair, and health variables, demonstrating causal linkage with the live weight of the cows analyzed. Initially, high correlations were identified between different variables included in this study; then, using advanced Machine learning (ML) techniques and the application of Shapley additive explanations (SHAP), a deeper understanding was provided of the factors strongly associated with adaptability in these environments, and, therefore, the respective zootechnical performance. The association between cattle genotypic components linked with the season of the year proved to be the most influential factor on cattle live weight. Variables such as hair length, hematocrit, phosphatase, phosphorus, creatine phosphokinase, creatinine, protein, cortisol, calcium, and the presence of endoparasites were highlighted, demonstrating their hierarchical importance for animal selection. ML models are effective tools for establishing hierarchies ofrelevance in complex phenotypic multivariable, which is crucial in breeding programs for different zootechnical species and in special and specific environments like wetlands. Key words: cattle adaptability in wetlands, SHAP, phenotypic variables, blood variables Este estudo foca no desempenho de vacas para producao de carne, criadas nos pantanos do Paraguai, examinando cinco genotipos bovinos; Brahman, Brangus, Nelore, bem como duas racas locais em risco de extincao. O principal objetivo e identificar e classificar variaveis fenotipicas que incluem variaveis sanguineas, clinicas, de pelagem e saude, demonstrando ligacao causal com o peso vivo das vacas analisadas. Inicialmente, foram identificadas correlacoes elevadas entre diferentes variaveis incluidas neste estudo, e, entao, utilizando tecnicas avancadas de aprendizado de maquina e a aplicacao de explicacoes aditivas de Shapley (SHAP), foi proporcionado um entendimento mais profundo dos fatores fortemente associados a adaptabilidade nestes ambientes, e, portanto, o respectivo desempenho zootecnico. A associacao entre o componente genotipico bovino ligado a estacao do ano mostrou ser o fator influente mais predominante sobre o peso vivo bovino. Variaveis como comprimento do pelo, hematocrito, fosfatase, fosforo, creatina phosphokinase, creatinina, proteina, cortisol, calcio e a presenca de endoparasitas foram destacadas, demonstrando sua importancia hierarquica para a selecao animal. Os modelos de ML sao ferramentas eficazes para estabelecer hierarquias de relevancia em multivariaveis fenotipicas complexas, o que e crucial em programas de melhoramento genetico em diferentes especies zootecnicas, bem como em ambientes especiais e especificos, como os pantanos. Palavras-chave: adaptabilidade bovina em pantanos, SHAP, variaveis fenotipicas, variaveis sanguineas</description><identifier>ISSN: 1415-4366</identifier><identifier>DOI: 10.1590/1807-1929/agriambi.v29n1e283168</identifier><language>eng</language><publisher>ATECEL--Associacao Tecnico Cientifica Ernesto Luiz de Oliveira Junior</publisher><subject>Analysis ; Animal behavior ; Cattle ; Corticosteroids ; Creatine ; Creatine kinase ; Extinction (Biology) ; Livestock industry ; Machine learning ; Phosphatases ; Rankings</subject><ispartof>Revista brasileira de engenharia agrícola e ambiental, 2025-01, Vol.29 (1), p.1</ispartof><rights>COPYRIGHT 2025 ATECEL--Associacao Tecnico Cientifica Ernesto Luiz de Oliveira Junior</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Pereira, Walter E</creatorcontrib><creatorcontrib>Centurion, Liz M</creatorcontrib><creatorcontrib>Valdez, Carolina</creatorcontrib><creatorcontrib>Ma</creatorcontrib><title>Machine learning for ranking multivariate variables in cattle breeds raised in Paraguayan wetlands /Aprendizado de maquina para classificacao de variaveis multivariadas em racas bovinas criadas em pantanos do Paraguai</title><title>Revista brasileira de engenharia agrícola e ambiental</title><description>This study focuses on the performance of cows for meat production raised in the wetlands of Paraguay, examining five cattle genotypes: Brahman, Brangus, and Nelore, as well as two local breeds at risk of extinction. The main objective is to identify and rank phenotypic variables, including blood, clinical, hair, and health variables, demonstrating causal linkage with the live weight of the cows analyzed. Initially, high correlations were identified between different variables included in this study; then, using advanced Machine learning (ML) techniques and the application of Shapley additive explanations (SHAP), a deeper understanding was provided of the factors strongly associated with adaptability in these environments, and, therefore, the respective zootechnical performance. The association between cattle genotypic components linked with the season of the year proved to be the most influential factor on cattle live weight. Variables such as hair length, hematocrit, phosphatase, phosphorus, creatine phosphokinase, creatinine, protein, cortisol, calcium, and the presence of endoparasites were highlighted, demonstrating their hierarchical importance for animal selection. ML models are effective tools for establishing hierarchies ofrelevance in complex phenotypic multivariable, which is crucial in breeding programs for different zootechnical species and in special and specific environments like wetlands. Key words: cattle adaptability in wetlands, SHAP, phenotypic variables, blood variables Este estudo foca no desempenho de vacas para producao de carne, criadas nos pantanos do Paraguai, examinando cinco genotipos bovinos; Brahman, Brangus, Nelore, bem como duas racas locais em risco de extincao. O principal objetivo e identificar e classificar variaveis fenotipicas que incluem variaveis sanguineas, clinicas, de pelagem e saude, demonstrando ligacao causal com o peso vivo das vacas analisadas. Inicialmente, foram identificadas correlacoes elevadas entre diferentes variaveis incluidas neste estudo, e, entao, utilizando tecnicas avancadas de aprendizado de maquina e a aplicacao de explicacoes aditivas de Shapley (SHAP), foi proporcionado um entendimento mais profundo dos fatores fortemente associados a adaptabilidade nestes ambientes, e, portanto, o respectivo desempenho zootecnico. A associacao entre o componente genotipico bovino ligado a estacao do ano mostrou ser o fator influente mais predominante sobre o peso vivo bovino. Variaveis como comprimento do pelo, hematocrito, fosfatase, fosforo, creatina phosphokinase, creatinina, proteina, cortisol, calcio e a presenca de endoparasitas foram destacadas, demonstrando sua importancia hierarquica para a selecao animal. Os modelos de ML sao ferramentas eficazes para estabelecer hierarquias de relevancia em multivariaveis fenotipicas complexas, o que e crucial em programas de melhoramento genetico em diferentes especies zootecnicas, bem como em ambientes especiais e especificos, como os pantanos. Palavras-chave: adaptabilidade bovina em pantanos, SHAP, variaveis fenotipicas, variaveis sanguineas</description><subject>Analysis</subject><subject>Animal behavior</subject><subject>Cattle</subject><subject>Corticosteroids</subject><subject>Creatine</subject><subject>Creatine kinase</subject><subject>Extinction (Biology)</subject><subject>Livestock industry</subject><subject>Machine learning</subject><subject>Phosphatases</subject><subject>Rankings</subject><issn>1415-4366</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNptjs9OwzAMxnsACRi8QyQOnLo1SZu0xwnxTxqCA3fkJk4xtOlouiF4U96GbExiB-SDLX8_f5-T5IJnU15U2YyXmU55JaoZNANBV9N0LSrPUZSSq_IgOeY5L9JcKnWUnITwmmWF5kodJ9_3YF7II2sRBk--Ya4f2AD-bTN3q3akNUTLEdm21y0GRp4ZGMcWWT0g2hB5Cmg3-0cYoFnBJ3j2gWMLPqqz-XJAb-kLbM8ssg7eV-SBLSPLTAshkCMDBrbqNmaNFPbSLQSGXYwxcaj7dbwOzPwJS_Aj-D6wGLD7gE6TQwdtwLNdnyRP11dPl7fp4uHm7nK-SBuldepKKKUupOBK5JgrXUuRc1dJI6R0zpTKWFlrp3lWgSzAFYWpIiK5UMJaJyfJ-a9tAy0-k3f9GN_sKJjneckzVfGs1JGa_kPFstiR6T06ivu9gx8N65a1</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Pereira, Walter E</creator><creator>Centurion, Liz M</creator><creator>Valdez, Carolina</creator><creator>Ma</creator><general>ATECEL--Associacao Tecnico Cientifica Ernesto Luiz de Oliveira Junior</general><scope>INF</scope></search><sort><creationdate>20250101</creationdate><title>Machine learning for ranking multivariate variables in cattle breeds raised in Paraguayan wetlands /Aprendizado de maquina para classificacao de variaveis multivariadas em racas bovinas criadas em pantanos do Paraguai</title><author>Pereira, Walter E ; Centurion, Liz M ; Valdez, Carolina ; Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g677-f8a8375321624e467b3241f93c233ffc86cd3b7f7109a35af55c932431262ddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Analysis</topic><topic>Animal behavior</topic><topic>Cattle</topic><topic>Corticosteroids</topic><topic>Creatine</topic><topic>Creatine kinase</topic><topic>Extinction (Biology)</topic><topic>Livestock industry</topic><topic>Machine learning</topic><topic>Phosphatases</topic><topic>Rankings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, Walter E</creatorcontrib><creatorcontrib>Centurion, Liz M</creatorcontrib><creatorcontrib>Valdez, Carolina</creatorcontrib><creatorcontrib>Ma</creatorcontrib><collection>Informe Académico</collection><jtitle>Revista brasileira de engenharia agrícola e ambiental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, Walter E</au><au>Centurion, Liz M</au><au>Valdez, Carolina</au><au>Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for ranking multivariate variables in cattle breeds raised in Paraguayan wetlands /Aprendizado de maquina para classificacao de variaveis multivariadas em racas bovinas criadas em pantanos do Paraguai</atitle><jtitle>Revista brasileira de engenharia agrícola e ambiental</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>29</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1415-4366</issn><abstract>This study focuses on the performance of cows for meat production raised in the wetlands of Paraguay, examining five cattle genotypes: Brahman, Brangus, and Nelore, as well as two local breeds at risk of extinction. The main objective is to identify and rank phenotypic variables, including blood, clinical, hair, and health variables, demonstrating causal linkage with the live weight of the cows analyzed. Initially, high correlations were identified between different variables included in this study; then, using advanced Machine learning (ML) techniques and the application of Shapley additive explanations (SHAP), a deeper understanding was provided of the factors strongly associated with adaptability in these environments, and, therefore, the respective zootechnical performance. The association between cattle genotypic components linked with the season of the year proved to be the most influential factor on cattle live weight. Variables such as hair length, hematocrit, phosphatase, phosphorus, creatine phosphokinase, creatinine, protein, cortisol, calcium, and the presence of endoparasites were highlighted, demonstrating their hierarchical importance for animal selection. ML models are effective tools for establishing hierarchies ofrelevance in complex phenotypic multivariable, which is crucial in breeding programs for different zootechnical species and in special and specific environments like wetlands. Key words: cattle adaptability in wetlands, SHAP, phenotypic variables, blood variables Este estudo foca no desempenho de vacas para producao de carne, criadas nos pantanos do Paraguai, examinando cinco genotipos bovinos; Brahman, Brangus, Nelore, bem como duas racas locais em risco de extincao. O principal objetivo e identificar e classificar variaveis fenotipicas que incluem variaveis sanguineas, clinicas, de pelagem e saude, demonstrando ligacao causal com o peso vivo das vacas analisadas. Inicialmente, foram identificadas correlacoes elevadas entre diferentes variaveis incluidas neste estudo, e, entao, utilizando tecnicas avancadas de aprendizado de maquina e a aplicacao de explicacoes aditivas de Shapley (SHAP), foi proporcionado um entendimento mais profundo dos fatores fortemente associados a adaptabilidade nestes ambientes, e, portanto, o respectivo desempenho zootecnico. A associacao entre o componente genotipico bovino ligado a estacao do ano mostrou ser o fator influente mais predominante sobre o peso vivo bovino. Variaveis como comprimento do pelo, hematocrito, fosfatase, fosforo, creatina phosphokinase, creatinina, proteina, cortisol, calcio e a presenca de endoparasitas foram destacadas, demonstrando sua importancia hierarquica para a selecao animal. Os modelos de ML sao ferramentas eficazes para estabelecer hierarquias de relevancia em multivariaveis fenotipicas complexas, o que e crucial em programas de melhoramento genetico em diferentes especies zootecnicas, bem como em ambientes especiais e especificos, como os pantanos. Palavras-chave: adaptabilidade bovina em pantanos, SHAP, variaveis fenotipicas, variaveis sanguineas</abstract><pub>ATECEL--Associacao Tecnico Cientifica Ernesto Luiz de Oliveira Junior</pub><doi>10.1590/1807-1929/agriambi.v29n1e283168</doi></addata></record>
fulltext fulltext
identifier ISSN: 1415-4366
ispartof Revista brasileira de engenharia agrícola e ambiental, 2025-01, Vol.29 (1), p.1
issn 1415-4366
language eng
recordid cdi_gale_infotracmisc_A810691087
source EZB Electronic Journals Library
subjects Analysis
Animal behavior
Cattle
Corticosteroids
Creatine
Creatine kinase
Extinction (Biology)
Livestock industry
Machine learning
Phosphatases
Rankings
title Machine learning for ranking multivariate variables in cattle breeds raised in Paraguayan wetlands /Aprendizado de maquina para classificacao de variaveis multivariadas em racas bovinas criadas em pantanos do Paraguai
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20ranking%20multivariate%20variables%20in%20cattle%20breeds%20raised%20in%20Paraguayan%20wetlands%20/Aprendizado%20de%20maquina%20para%20classificacao%20de%20variaveis%20multivariadas%20em%20racas%20bovinas%20criadas%20em%20pantanos%20do%20Paraguai&rft.jtitle=Revista%20brasileira%20de%20engenharia%20agr%C3%ADcola%20e%20ambiental&rft.au=Pereira,%20Walter%20E&rft.date=2025-01-01&rft.volume=29&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1415-4366&rft_id=info:doi/10.1590/1807-1929/agriambi.v29n1e283168&rft_dat=%3Cgale%3EA810691087%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A810691087&rfr_iscdi=true