Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations
This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequen...
Gespeichert in:
Veröffentlicht in: | The electronic journal of mathematics & technology 2024-06, Vol.18 (2), p.77 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 77 |
container_title | The electronic journal of mathematics & technology |
container_volume | 18 |
creator | Yang, Wei-Chi |
description | This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines. |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A800972221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A800972221</galeid><sourcerecordid>A800972221</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1731-8107ee12ca26eae73178ce4eec4698bebd7bbaa7a92ae1b6e3c1b570599fb28a3</originalsourceid><addsrcrecordid>eNqN0FFLwzAQB_AiCs7pdwj45EOlSdcmfRxlzsFg4txzuaTXEmkTTTqZ396M7WGDPcg93PHnd_dwV9GIFmkaM8HS65P5Nrrz_jNJslyIySiSG6Mb63pSWvODrkWjkFhDFgM6GLQ1noRsP2NN5C9Zf6HS0B34LrReanOEtiFv4KDHwWlFZt_bQ34f3TTQeXw49nG0eZl9lK_xcjVflNNl3FKe0ljQhCNSpoDlCBgiLhROENUkL4REWXMpATgUDJDKHFNFZcaTrCgayQSk4-jxcLeFDittGjs4UL32qpqKJCk4Y4wG9XxBhaqx18oabHTIzxaezhaCGXA3tLD1vlqs3_9txXx5buNLVtmuwxar8Jpyder_ADIJja8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</title><source>Alma/SFX Local Collection</source><creator>Yang, Wei-Chi</creator><creatorcontrib>Yang, Wei-Chi</creatorcontrib><description>This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines.</description><identifier>ISSN: 1933-2823</identifier><identifier>EISSN: 1933-2823</identifier><language>eng</language><publisher>Mathematics and Technology, LLC</publisher><subject>Analysis ; Combinatorial analysis ; Convergence (Mathematics) ; Convex functions ; Iteration (Mathematics) ; Iterative methods (Mathematics) ; Methods ; Parametric equations</subject><ispartof>The electronic journal of mathematics & technology, 2024-06, Vol.18 (2), p.77</ispartof><rights>COPYRIGHT 2024 Mathematics and Technology, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yang, Wei-Chi</creatorcontrib><title>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</title><title>The electronic journal of mathematics & technology</title><addtitle>Electronic Journal of Mathematics and Technology</addtitle><description>This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines.</description><subject>Analysis</subject><subject>Combinatorial analysis</subject><subject>Convergence (Mathematics)</subject><subject>Convex functions</subject><subject>Iteration (Mathematics)</subject><subject>Iterative methods (Mathematics)</subject><subject>Methods</subject><subject>Parametric equations</subject><issn>1933-2823</issn><issn>1933-2823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqN0FFLwzAQB_AiCs7pdwj45EOlSdcmfRxlzsFg4txzuaTXEmkTTTqZ396M7WGDPcg93PHnd_dwV9GIFmkaM8HS65P5Nrrz_jNJslyIySiSG6Mb63pSWvODrkWjkFhDFgM6GLQ1noRsP2NN5C9Zf6HS0B34LrReanOEtiFv4KDHwWlFZt_bQ34f3TTQeXw49nG0eZl9lK_xcjVflNNl3FKe0ljQhCNSpoDlCBgiLhROENUkL4REWXMpATgUDJDKHFNFZcaTrCgayQSk4-jxcLeFDittGjs4UL32qpqKJCk4Y4wG9XxBhaqx18oabHTIzxaezhaCGXA3tLD1vlqs3_9txXx5buNLVtmuwxar8Jpyder_ADIJja8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yang, Wei-Chi</creator><general>Mathematics and Technology, LLC</general><scope>8GL</scope><scope>ISR</scope></search><sort><creationdate>20240601</creationdate><title>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</title><author>Yang, Wei-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1731-8107ee12ca26eae73178ce4eec4698bebd7bbaa7a92ae1b6e3c1b570599fb28a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Combinatorial analysis</topic><topic>Convergence (Mathematics)</topic><topic>Convex functions</topic><topic>Iteration (Mathematics)</topic><topic>Iterative methods (Mathematics)</topic><topic>Methods</topic><topic>Parametric equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wei-Chi</creatorcontrib><collection>Gale In Context: High School</collection><collection>Gale In Context: Science</collection><jtitle>The electronic journal of mathematics & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wei-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</atitle><jtitle>The electronic journal of mathematics & technology</jtitle><addtitle>Electronic Journal of Mathematics and Technology</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>77</spage><pages>77-</pages><issn>1933-2823</issn><eissn>1933-2823</eissn><abstract>This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines.</abstract><pub>Mathematics and Technology, LLC</pub><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-2823 |
ispartof | The electronic journal of mathematics & technology, 2024-06, Vol.18 (2), p.77 |
issn | 1933-2823 1933-2823 |
language | eng |
recordid | cdi_gale_infotracmisc_A800972221 |
source | Alma/SFX Local Collection |
subjects | Analysis Combinatorial analysis Convergence (Mathematics) Convex functions Iteration (Mathematics) Iterative methods (Mathematics) Methods Parametric equations |
title | Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Convergence%20on%20Iterations%20generated%20by%20Special%20Convex%20Combinations%20of%20Parametric%20Equations&rft.jtitle=The%20electronic%20journal%20of%20mathematics%20&%20technology&rft.au=Yang,%20Wei-Chi&rft.date=2024-06-01&rft.volume=18&rft.issue=2&rft.spage=77&rft.pages=77-&rft.issn=1933-2823&rft.eissn=1933-2823&rft_id=info:doi/&rft_dat=%3Cgale%3EA800972221%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A800972221&rfr_iscdi=true |