Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations

This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The electronic journal of mathematics & technology 2024-06, Vol.18 (2), p.77
1. Verfasser: Yang, Wei-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 77
container_title The electronic journal of mathematics & technology
container_volume 18
creator Yang, Wei-Chi
description This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines.
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A800972221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A800972221</galeid><sourcerecordid>A800972221</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1731-8107ee12ca26eae73178ce4eec4698bebd7bbaa7a92ae1b6e3c1b570599fb28a3</originalsourceid><addsrcrecordid>eNqN0FFLwzAQB_AiCs7pdwj45EOlSdcmfRxlzsFg4txzuaTXEmkTTTqZ396M7WGDPcg93PHnd_dwV9GIFmkaM8HS65P5Nrrz_jNJslyIySiSG6Mb63pSWvODrkWjkFhDFgM6GLQ1noRsP2NN5C9Zf6HS0B34LrReanOEtiFv4KDHwWlFZt_bQ34f3TTQeXw49nG0eZl9lK_xcjVflNNl3FKe0ljQhCNSpoDlCBgiLhROENUkL4REWXMpATgUDJDKHFNFZcaTrCgayQSk4-jxcLeFDittGjs4UL32qpqKJCk4Y4wG9XxBhaqx18oabHTIzxaezhaCGXA3tLD1vlqs3_9txXx5buNLVtmuwxar8Jpyder_ADIJja8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</title><source>Alma/SFX Local Collection</source><creator>Yang, Wei-Chi</creator><creatorcontrib>Yang, Wei-Chi</creatorcontrib><description>This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines.</description><identifier>ISSN: 1933-2823</identifier><identifier>EISSN: 1933-2823</identifier><language>eng</language><publisher>Mathematics and Technology, LLC</publisher><subject>Analysis ; Combinatorial analysis ; Convergence (Mathematics) ; Convex functions ; Iteration (Mathematics) ; Iterative methods (Mathematics) ; Methods ; Parametric equations</subject><ispartof>The electronic journal of mathematics &amp; technology, 2024-06, Vol.18 (2), p.77</ispartof><rights>COPYRIGHT 2024 Mathematics and Technology, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yang, Wei-Chi</creatorcontrib><title>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</title><title>The electronic journal of mathematics &amp; technology</title><addtitle>Electronic Journal of Mathematics and Technology</addtitle><description>This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines.</description><subject>Analysis</subject><subject>Combinatorial analysis</subject><subject>Convergence (Mathematics)</subject><subject>Convex functions</subject><subject>Iteration (Mathematics)</subject><subject>Iterative methods (Mathematics)</subject><subject>Methods</subject><subject>Parametric equations</subject><issn>1933-2823</issn><issn>1933-2823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqN0FFLwzAQB_AiCs7pdwj45EOlSdcmfRxlzsFg4txzuaTXEmkTTTqZ396M7WGDPcg93PHnd_dwV9GIFmkaM8HS65P5Nrrz_jNJslyIySiSG6Mb63pSWvODrkWjkFhDFgM6GLQ1noRsP2NN5C9Zf6HS0B34LrReanOEtiFv4KDHwWlFZt_bQ34f3TTQeXw49nG0eZl9lK_xcjVflNNl3FKe0ljQhCNSpoDlCBgiLhROENUkL4REWXMpATgUDJDKHFNFZcaTrCgayQSk4-jxcLeFDittGjs4UL32qpqKJCk4Y4wG9XxBhaqx18oabHTIzxaezhaCGXA3tLD1vlqs3_9txXx5buNLVtmuwxar8Jpyder_ADIJja8</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Yang, Wei-Chi</creator><general>Mathematics and Technology, LLC</general><scope>8GL</scope><scope>ISR</scope></search><sort><creationdate>20240601</creationdate><title>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</title><author>Yang, Wei-Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1731-8107ee12ca26eae73178ce4eec4698bebd7bbaa7a92ae1b6e3c1b570599fb28a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Combinatorial analysis</topic><topic>Convergence (Mathematics)</topic><topic>Convex functions</topic><topic>Iteration (Mathematics)</topic><topic>Iterative methods (Mathematics)</topic><topic>Methods</topic><topic>Parametric equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Wei-Chi</creatorcontrib><collection>Gale In Context: High School</collection><collection>Gale In Context: Science</collection><jtitle>The electronic journal of mathematics &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Wei-Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations</atitle><jtitle>The electronic journal of mathematics &amp; technology</jtitle><addtitle>Electronic Journal of Mathematics and Technology</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>77</spage><pages>77-</pages><issn>1933-2823</issn><eissn>1933-2823</eissn><abstract>This is an expansion and modification of the paper from [6]. We discuss the convergence of locus in the paper [5], which originated from a practice problem for the Chinese college entrance exam. Next, we extended some results in [6] from 2D to 3D. We are interested in the limit of a recursive sequence of loci that is built on a special convex combination of vectors involving curves or surfaces. We shall see many interesting graphs of uniform convergence of sequences generated by parametric curves and surfaces, which we hope to inspire many applications in computer graphics, and other related disciplines.</abstract><pub>Mathematics and Technology, LLC</pub><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1933-2823
ispartof The electronic journal of mathematics & technology, 2024-06, Vol.18 (2), p.77
issn 1933-2823
1933-2823
language eng
recordid cdi_gale_infotracmisc_A800972221
source Alma/SFX Local Collection
subjects Analysis
Combinatorial analysis
Convergence (Mathematics)
Convex functions
Iteration (Mathematics)
Iterative methods (Mathematics)
Methods
Parametric equations
title Uniform Convergence on Iterations generated by Special Convex Combinations of Parametric Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20Convergence%20on%20Iterations%20generated%20by%20Special%20Convex%20Combinations%20of%20Parametric%20Equations&rft.jtitle=The%20electronic%20journal%20of%20mathematics%20&%20technology&rft.au=Yang,%20Wei-Chi&rft.date=2024-06-01&rft.volume=18&rft.issue=2&rft.spage=77&rft.pages=77-&rft.issn=1933-2823&rft.eissn=1933-2823&rft_id=info:doi/&rft_dat=%3Cgale%3EA800972221%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A800972221&rfr_iscdi=true