Predicting ISalmonella/I MIC and Deciphering Genomic Determinants of Antibiotic Resistance and Susceptibility

Salmonella spp., a leading cause of foodborne illness, is a formidable global menace due to escalating antimicrobial resistance (AMR). The evaluation of minimum inhibitory concentration (MIC) for antimicrobials is critical for characterizing AMR. The current whole genome sequencing (WGS)-based appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2024-01, Vol.12 (1)
Hauptverfasser: Ayoola, Moses B, Das, Athish Ram, Krishnan, B. Santhana, Smith, David R, Nanduri, Bindu, Ramkumar, Mahalingam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Microorganisms (Basel)
container_volume 12
creator Ayoola, Moses B
Das, Athish Ram
Krishnan, B. Santhana
Smith, David R
Nanduri, Bindu
Ramkumar, Mahalingam
description Salmonella spp., a leading cause of foodborne illness, is a formidable global menace due to escalating antimicrobial resistance (AMR). The evaluation of minimum inhibitory concentration (MIC) for antimicrobials is critical for characterizing AMR. The current whole genome sequencing (WGS)-based approaches for predicting MIC are hindered by both computational and feature identification constraints. We propose an innovative methodology called the “Genome Feature Extractor Pipeline” that integrates traditional machine learning (random forest, RF) with deep learning models (multilayer perceptron (MLP) and DeepLift) for WGS-based MIC prediction. We used a dataset from the National Antimicrobial Resistance Monitoring System (NARMS), comprising 4500 assembled genomes of nontyphoidal Salmonella, each annotated with MIC metadata for 15 antibiotics. Our pipeline involves the batch downloading of annotated genomes, the determination of feature importance using RF, Gini-index-based selection of crucial 10-mers, and their expansion to 20-mers. This is followed by an MLP network, with four hidden layers of 1024 neurons each, to predict MIC values. Using DeepLift, key 20-mers and associated genes influencing MIC are identified. The 10 most significant 20-mers for each antibiotic are listed, showcasing our ability to discern genomic features affecting Salmonella MIC prediction with enhanced precision. The methodology replaces binary indicators with k-mer counts, offering a more nuanced analysis. The combination of RF and MLP addresses the limitations of the existing WGS approach, providing a robust and efficient method for predicting MIC values in Salmonella that could potentially be applied to other pathogens.
doi_str_mv 10.3390/microorganisms12010134
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A780879641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780879641</galeid><sourcerecordid>A780879641</sourcerecordid><originalsourceid>FETCH-LOGICAL-g671-960b94a0ba1d8ad3251447732b30b80d92fcba6ac1498ccdf9aef522bc9418d13</originalsourceid><addsrcrecordid>eNptUEtPwzAMjhBITGN_AVXi3C2PrkmO04BRaQjEdp-cVwlq06kJB_49GXDYAftg63vYshG6JXjOmMSL3utxGMYWgo99JBQTTFh1gSYU87qkNeaXZ_01msX4gXNIwsSSTFD_OlrjdfKhLZoddP0QbNfBoimem3UBwRT3Vvvjux1Pio0NQ96YsWTH3gcIKRaDK1YheeWHlKk3G31MELT9ce8-o7bHE9v59HWDrhx00c7-6hTtHx_266dy-7Jp1qtt2daclLLGSlaAFRAjwDC6JFXFOaOKYSWwkdRpBTVoUkmhtXESrFtSqrSsiDCETdHd79gWOnvwwQ1pBN37qA8rLrDgsq5Oqvk_qpzG5hvzH5zP-JnhG_Elb9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting ISalmonella/I MIC and Deciphering Genomic Determinants of Antibiotic Resistance and Susceptibility</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ayoola, Moses B ; Das, Athish Ram ; Krishnan, B. Santhana ; Smith, David R ; Nanduri, Bindu ; Ramkumar, Mahalingam</creator><creatorcontrib>Ayoola, Moses B ; Das, Athish Ram ; Krishnan, B. Santhana ; Smith, David R ; Nanduri, Bindu ; Ramkumar, Mahalingam</creatorcontrib><description>Salmonella spp., a leading cause of foodborne illness, is a formidable global menace due to escalating antimicrobial resistance (AMR). The evaluation of minimum inhibitory concentration (MIC) for antimicrobials is critical for characterizing AMR. The current whole genome sequencing (WGS)-based approaches for predicting MIC are hindered by both computational and feature identification constraints. We propose an innovative methodology called the “Genome Feature Extractor Pipeline” that integrates traditional machine learning (random forest, RF) with deep learning models (multilayer perceptron (MLP) and DeepLift) for WGS-based MIC prediction. We used a dataset from the National Antimicrobial Resistance Monitoring System (NARMS), comprising 4500 assembled genomes of nontyphoidal Salmonella, each annotated with MIC metadata for 15 antibiotics. Our pipeline involves the batch downloading of annotated genomes, the determination of feature importance using RF, Gini-index-based selection of crucial 10-mers, and their expansion to 20-mers. This is followed by an MLP network, with four hidden layers of 1024 neurons each, to predict MIC values. Using DeepLift, key 20-mers and associated genes influencing MIC are identified. The 10 most significant 20-mers for each antibiotic are listed, showcasing our ability to discern genomic features affecting Salmonella MIC prediction with enhanced precision. The methodology replaces binary indicators with k-mer counts, offering a more nuanced analysis. The combination of RF and MLP addresses the limitations of the existing WGS approach, providing a robust and efficient method for predicting MIC values in Salmonella that could potentially be applied to other pathogens.</description><identifier>ISSN: 2076-2607</identifier><identifier>EISSN: 2076-2607</identifier><identifier>DOI: 10.3390/microorganisms12010134</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Drug resistance in microorganisms ; Genetic aspects ; Health aspects ; Salmonella</subject><ispartof>Microorganisms (Basel), 2024-01, Vol.12 (1)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Ayoola, Moses B</creatorcontrib><creatorcontrib>Das, Athish Ram</creatorcontrib><creatorcontrib>Krishnan, B. Santhana</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><creatorcontrib>Nanduri, Bindu</creatorcontrib><creatorcontrib>Ramkumar, Mahalingam</creatorcontrib><title>Predicting ISalmonella/I MIC and Deciphering Genomic Determinants of Antibiotic Resistance and Susceptibility</title><title>Microorganisms (Basel)</title><description>Salmonella spp., a leading cause of foodborne illness, is a formidable global menace due to escalating antimicrobial resistance (AMR). The evaluation of minimum inhibitory concentration (MIC) for antimicrobials is critical for characterizing AMR. The current whole genome sequencing (WGS)-based approaches for predicting MIC are hindered by both computational and feature identification constraints. We propose an innovative methodology called the “Genome Feature Extractor Pipeline” that integrates traditional machine learning (random forest, RF) with deep learning models (multilayer perceptron (MLP) and DeepLift) for WGS-based MIC prediction. We used a dataset from the National Antimicrobial Resistance Monitoring System (NARMS), comprising 4500 assembled genomes of nontyphoidal Salmonella, each annotated with MIC metadata for 15 antibiotics. Our pipeline involves the batch downloading of annotated genomes, the determination of feature importance using RF, Gini-index-based selection of crucial 10-mers, and their expansion to 20-mers. This is followed by an MLP network, with four hidden layers of 1024 neurons each, to predict MIC values. Using DeepLift, key 20-mers and associated genes influencing MIC are identified. The 10 most significant 20-mers for each antibiotic are listed, showcasing our ability to discern genomic features affecting Salmonella MIC prediction with enhanced precision. The methodology replaces binary indicators with k-mer counts, offering a more nuanced analysis. The combination of RF and MLP addresses the limitations of the existing WGS approach, providing a robust and efficient method for predicting MIC values in Salmonella that could potentially be applied to other pathogens.</description><subject>Drug resistance in microorganisms</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Salmonella</subject><issn>2076-2607</issn><issn>2076-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptUEtPwzAMjhBITGN_AVXi3C2PrkmO04BRaQjEdp-cVwlq06kJB_49GXDYAftg63vYshG6JXjOmMSL3utxGMYWgo99JBQTTFh1gSYU87qkNeaXZ_01msX4gXNIwsSSTFD_OlrjdfKhLZoddP0QbNfBoimem3UBwRT3Vvvjux1Pio0NQ96YsWTH3gcIKRaDK1YheeWHlKk3G31MELT9ce8-o7bHE9v59HWDrhx00c7-6hTtHx_266dy-7Jp1qtt2daclLLGSlaAFRAjwDC6JFXFOaOKYSWwkdRpBTVoUkmhtXESrFtSqrSsiDCETdHd79gWOnvwwQ1pBN37qA8rLrDgsq5Oqvk_qpzG5hvzH5zP-JnhG_Elb9M</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Ayoola, Moses B</creator><creator>Das, Athish Ram</creator><creator>Krishnan, B. Santhana</creator><creator>Smith, David R</creator><creator>Nanduri, Bindu</creator><creator>Ramkumar, Mahalingam</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20240101</creationdate><title>Predicting ISalmonella/I MIC and Deciphering Genomic Determinants of Antibiotic Resistance and Susceptibility</title><author>Ayoola, Moses B ; Das, Athish Ram ; Krishnan, B. Santhana ; Smith, David R ; Nanduri, Bindu ; Ramkumar, Mahalingam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g671-960b94a0ba1d8ad3251447732b30b80d92fcba6ac1498ccdf9aef522bc9418d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Drug resistance in microorganisms</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Salmonella</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayoola, Moses B</creatorcontrib><creatorcontrib>Das, Athish Ram</creatorcontrib><creatorcontrib>Krishnan, B. Santhana</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><creatorcontrib>Nanduri, Bindu</creatorcontrib><creatorcontrib>Ramkumar, Mahalingam</creatorcontrib><jtitle>Microorganisms (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayoola, Moses B</au><au>Das, Athish Ram</au><au>Krishnan, B. Santhana</au><au>Smith, David R</au><au>Nanduri, Bindu</au><au>Ramkumar, Mahalingam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting ISalmonella/I MIC and Deciphering Genomic Determinants of Antibiotic Resistance and Susceptibility</atitle><jtitle>Microorganisms (Basel)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><issn>2076-2607</issn><eissn>2076-2607</eissn><abstract>Salmonella spp., a leading cause of foodborne illness, is a formidable global menace due to escalating antimicrobial resistance (AMR). The evaluation of minimum inhibitory concentration (MIC) for antimicrobials is critical for characterizing AMR. The current whole genome sequencing (WGS)-based approaches for predicting MIC are hindered by both computational and feature identification constraints. We propose an innovative methodology called the “Genome Feature Extractor Pipeline” that integrates traditional machine learning (random forest, RF) with deep learning models (multilayer perceptron (MLP) and DeepLift) for WGS-based MIC prediction. We used a dataset from the National Antimicrobial Resistance Monitoring System (NARMS), comprising 4500 assembled genomes of nontyphoidal Salmonella, each annotated with MIC metadata for 15 antibiotics. Our pipeline involves the batch downloading of annotated genomes, the determination of feature importance using RF, Gini-index-based selection of crucial 10-mers, and their expansion to 20-mers. This is followed by an MLP network, with four hidden layers of 1024 neurons each, to predict MIC values. Using DeepLift, key 20-mers and associated genes influencing MIC are identified. The 10 most significant 20-mers for each antibiotic are listed, showcasing our ability to discern genomic features affecting Salmonella MIC prediction with enhanced precision. The methodology replaces binary indicators with k-mer counts, offering a more nuanced analysis. The combination of RF and MLP addresses the limitations of the existing WGS approach, providing a robust and efficient method for predicting MIC values in Salmonella that could potentially be applied to other pathogens.</abstract><pub>MDPI AG</pub><doi>10.3390/microorganisms12010134</doi></addata></record>
fulltext fulltext
identifier ISSN: 2076-2607
ispartof Microorganisms (Basel), 2024-01, Vol.12 (1)
issn 2076-2607
2076-2607
language eng
recordid cdi_gale_infotracmisc_A780879641
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Drug resistance in microorganisms
Genetic aspects
Health aspects
Salmonella
title Predicting ISalmonella/I MIC and Deciphering Genomic Determinants of Antibiotic Resistance and Susceptibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20ISalmonella/I%20MIC%20and%20Deciphering%20Genomic%20Determinants%20of%20Antibiotic%20Resistance%20and%20Susceptibility&rft.jtitle=Microorganisms%20(Basel)&rft.au=Ayoola,%20Moses%20B&rft.date=2024-01-01&rft.volume=12&rft.issue=1&rft.issn=2076-2607&rft.eissn=2076-2607&rft_id=info:doi/10.3390/microorganisms12010134&rft_dat=%3Cgale%3EA780879641%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A780879641&rfr_iscdi=true