Single-Cell RNA Sequencing Reveals the Cellular Landscape of ILongissimus Dorsi/I in a Newborn Suhuai Pig
The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-01, Vol.25 (2) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Xiao, Wei Jiang, Nengjing Ji, Zhengyu Ni, Mengru Zhang, Zhaobo Zhao, Qingbo Huang, Ruihua Li, Pinghua Hou, Liming |
description | The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell–cell interactions by evaluating the gene expression of receptor–ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs. |
doi_str_mv | 10.3390/ijms25021204 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A780876731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780876731</galeid><sourcerecordid>A780876731</sourcerecordid><originalsourceid>FETCH-LOGICAL-g671-93babafb8e3b6c1d11ed194e8cb680adcc60f56ef7e12386b3afd0361fd626653</originalsourceid><addsrcrecordid>eNptjDtPwzAUhT2ARCls_IArMaf1o3GSsSqPVooKarpXflynrhIH4gb-PkEwMKAzHOk7D0LuGJ0JUdC5P7WRp5QzThcXZMIWnCeUyuyKXMd4opQLnhYT4isf6gaTFTYN7LZLqPB9wGBGCjv8QNVEOB8RvvOhUT2UKtho1BtC52BTdqH2Mfp2iPDQ9dHPN-ADKNjip-76ANVwHJSHV1_fkEs3vuHtr0_J_ulxv1on5cvzZrUsk1pmLCmEVlo5naPQ0jDLGFpWLDA3WuZUWWMkdalElyHjIpdaKGepkMxZyaVMxZTc_9zWqsGDD64798q0PprDMstpnslMsLE1-6c1ymLrTRfQ-ZH_GXwByeNmyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single-Cell RNA Sequencing Reveals the Cellular Landscape of ILongissimus Dorsi/I in a Newborn Suhuai Pig</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Xiao, Wei ; Jiang, Nengjing ; Ji, Zhengyu ; Ni, Mengru ; Zhang, Zhaobo ; Zhao, Qingbo ; Huang, Ruihua ; Li, Pinghua ; Hou, Liming</creator><creatorcontrib>Xiao, Wei ; Jiang, Nengjing ; Ji, Zhengyu ; Ni, Mengru ; Zhang, Zhaobo ; Zhao, Qingbo ; Huang, Ruihua ; Li, Pinghua ; Hou, Liming</creatorcontrib><description>The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell–cell interactions by evaluating the gene expression of receptor–ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs.</description><identifier>ISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25021204</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Analysis ; Cell differentiation ; Dendritic cells ; Endothelium ; Gene expression ; Genes ; Meat ; Muscles ; Pork industry ; RNA ; RNA sequencing</subject><ispartof>International journal of molecular sciences, 2024-01, Vol.25 (2)</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Xiao, Wei</creatorcontrib><creatorcontrib>Jiang, Nengjing</creatorcontrib><creatorcontrib>Ji, Zhengyu</creatorcontrib><creatorcontrib>Ni, Mengru</creatorcontrib><creatorcontrib>Zhang, Zhaobo</creatorcontrib><creatorcontrib>Zhao, Qingbo</creatorcontrib><creatorcontrib>Huang, Ruihua</creatorcontrib><creatorcontrib>Li, Pinghua</creatorcontrib><creatorcontrib>Hou, Liming</creatorcontrib><title>Single-Cell RNA Sequencing Reveals the Cellular Landscape of ILongissimus Dorsi/I in a Newborn Suhuai Pig</title><title>International journal of molecular sciences</title><description>The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell–cell interactions by evaluating the gene expression of receptor–ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs.</description><subject>Analysis</subject><subject>Cell differentiation</subject><subject>Dendritic cells</subject><subject>Endothelium</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Meat</subject><subject>Muscles</subject><subject>Pork industry</subject><subject>RNA</subject><subject>RNA sequencing</subject><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptjDtPwzAUhT2ARCls_IArMaf1o3GSsSqPVooKarpXflynrhIH4gb-PkEwMKAzHOk7D0LuGJ0JUdC5P7WRp5QzThcXZMIWnCeUyuyKXMd4opQLnhYT4isf6gaTFTYN7LZLqPB9wGBGCjv8QNVEOB8RvvOhUT2UKtho1BtC52BTdqH2Mfp2iPDQ9dHPN-ADKNjip-76ANVwHJSHV1_fkEs3vuHtr0_J_ulxv1on5cvzZrUsk1pmLCmEVlo5naPQ0jDLGFpWLDA3WuZUWWMkdalElyHjIpdaKGepkMxZyaVMxZTc_9zWqsGDD64798q0PprDMstpnslMsLE1-6c1ymLrTRfQ-ZH_GXwByeNmyw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xiao, Wei</creator><creator>Jiang, Nengjing</creator><creator>Ji, Zhengyu</creator><creator>Ni, Mengru</creator><creator>Zhang, Zhaobo</creator><creator>Zhao, Qingbo</creator><creator>Huang, Ruihua</creator><creator>Li, Pinghua</creator><creator>Hou, Liming</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20240101</creationdate><title>Single-Cell RNA Sequencing Reveals the Cellular Landscape of ILongissimus Dorsi/I in a Newborn Suhuai Pig</title><author>Xiao, Wei ; Jiang, Nengjing ; Ji, Zhengyu ; Ni, Mengru ; Zhang, Zhaobo ; Zhao, Qingbo ; Huang, Ruihua ; Li, Pinghua ; Hou, Liming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g671-93babafb8e3b6c1d11ed194e8cb680adcc60f56ef7e12386b3afd0361fd626653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Cell differentiation</topic><topic>Dendritic cells</topic><topic>Endothelium</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Meat</topic><topic>Muscles</topic><topic>Pork industry</topic><topic>RNA</topic><topic>RNA sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Wei</creatorcontrib><creatorcontrib>Jiang, Nengjing</creatorcontrib><creatorcontrib>Ji, Zhengyu</creatorcontrib><creatorcontrib>Ni, Mengru</creatorcontrib><creatorcontrib>Zhang, Zhaobo</creatorcontrib><creatorcontrib>Zhao, Qingbo</creatorcontrib><creatorcontrib>Huang, Ruihua</creatorcontrib><creatorcontrib>Li, Pinghua</creatorcontrib><creatorcontrib>Hou, Liming</creatorcontrib><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Wei</au><au>Jiang, Nengjing</au><au>Ji, Zhengyu</au><au>Ni, Mengru</au><au>Zhang, Zhaobo</au><au>Zhao, Qingbo</au><au>Huang, Ruihua</au><au>Li, Pinghua</au><au>Hou, Liming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell RNA Sequencing Reveals the Cellular Landscape of ILongissimus Dorsi/I in a Newborn Suhuai Pig</atitle><jtitle>International journal of molecular sciences</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>25</volume><issue>2</issue><issn>1422-0067</issn><abstract>The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell–cell interactions by evaluating the gene expression of receptor–ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs.</abstract><pub>MDPI AG</pub><doi>10.3390/ijms25021204</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-01, Vol.25 (2) |
issn | 1422-0067 |
language | eng |
recordid | cdi_gale_infotracmisc_A780876731 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Analysis Cell differentiation Dendritic cells Endothelium Gene expression Genes Meat Muscles Pork industry RNA RNA sequencing |
title | Single-Cell RNA Sequencing Reveals the Cellular Landscape of ILongissimus Dorsi/I in a Newborn Suhuai Pig |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20RNA%20Sequencing%20Reveals%20the%20Cellular%20Landscape%20of%20ILongissimus%20Dorsi/I%20in%20a%20Newborn%20Suhuai%20Pig&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Xiao,%20Wei&rft.date=2024-01-01&rft.volume=25&rft.issue=2&rft.issn=1422-0067&rft_id=info:doi/10.3390/ijms25021204&rft_dat=%3Cgale%3EA780876731%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A780876731&rfr_iscdi=true |