Tuning Fatty Acid Profile and Yield in IPichia pastoris/I

Fatty acids have been supplied for diverse non-food, industrial applications from plant oils and animal fats for many decades. Due to the massively increasing world population demanding a nutritious diet and the thrive to provide feedstocks for industrial production lines in a sustainable way, i.e.,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioengineering (Basel) 2023-12, Vol.10 (12)
Hauptverfasser: Kobalter, Simon, Voit, Alena, Bekerle-Bogner, Myria, Rudalija, Haris, Haas, Anne, Wriessnegger, Tamara, Pichler, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Bioengineering (Basel)
container_volume 10
creator Kobalter, Simon
Voit, Alena
Bekerle-Bogner, Myria
Rudalija, Haris
Haas, Anne
Wriessnegger, Tamara
Pichler, Harald
description Fatty acids have been supplied for diverse non-food, industrial applications from plant oils and animal fats for many decades. Due to the massively increasing world population demanding a nutritious diet and the thrive to provide feedstocks for industrial production lines in a sustainable way, i.e., independent from food supply chains, alternative fatty acid sources have massively gained in importance. Carbohydrate-rich side-streams of agricultural production, e.g., molasses, lignocellulosic waste, glycerol from biodiesel production, and even CO[sub.2] , are considered and employed as carbon sources for the fermentative accumulation of fatty acids in selected microbial hosts. While certain fatty acid species are readily accumulated in native microbial metabolic routes, other fatty acid species are scarce, and host strains need to be metabolically engineered for their high-level production. We report the metabolic engineering of Pichia pastoris to produce palmitoleic acid from glucose and discuss the beneficial and detrimental engineering steps in detail. Fatty acid secretion was achieved through the deletion of fatty acyl-CoA synthetases and overexpression of the truncated E. coli thioesterase ‘TesA. The best strains secreted >1 g/L free fatty acids into the culture medium. Additionally, the introduction of C16-specific ∆9-desaturases and fatty acid synthases, coupled with improved cultivation conditions, increased the palmitoleic acid content from 5.5% to 22%.
doi_str_mv 10.3390/bioengineering10121412
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A777496535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A777496535</galeid><sourcerecordid>A777496535</sourcerecordid><originalsourceid>FETCH-LOGICAL-g675-353729e7441d467bca4de85116cfcec4a1b76d222ca2e12e64897a8da29f1fd13</originalsourceid><addsrcrecordid>eNptjzFPwzAUhC0EElXpX0CWmNP62Y4dj1VFIVIlOmRhqhz7JTyUOigJA_-eIBg6oBvuhu9OOsbuQayVcmJTU4-ppYQ4UGpBgAQN8ootpBImy1Wury_yLVuN47sQApTMpdEL5qrPNBf53k_TF98Givw49A11yH2K_JWwi5wSL48U3sjzDz9O_UDjprxjN43vRlz9-ZJV-8dq95wdXp7K3faQtcbmmcqVlQ6t1hC1sXXwOmKRA5jQBAzaQ21NlFIGLxEkGl0464vopWugiaCW7OF3tvUdnig1_TT4cKYxnLbWWu3MfGym1v9QsyKeKfQJfx5dFr4BCOhbUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tuning Fatty Acid Profile and Yield in IPichia pastoris/I</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kobalter, Simon ; Voit, Alena ; Bekerle-Bogner, Myria ; Rudalija, Haris ; Haas, Anne ; Wriessnegger, Tamara ; Pichler, Harald</creator><creatorcontrib>Kobalter, Simon ; Voit, Alena ; Bekerle-Bogner, Myria ; Rudalija, Haris ; Haas, Anne ; Wriessnegger, Tamara ; Pichler, Harald</creatorcontrib><description>Fatty acids have been supplied for diverse non-food, industrial applications from plant oils and animal fats for many decades. Due to the massively increasing world population demanding a nutritious diet and the thrive to provide feedstocks for industrial production lines in a sustainable way, i.e., independent from food supply chains, alternative fatty acid sources have massively gained in importance. Carbohydrate-rich side-streams of agricultural production, e.g., molasses, lignocellulosic waste, glycerol from biodiesel production, and even CO[sub.2] , are considered and employed as carbon sources for the fermentative accumulation of fatty acids in selected microbial hosts. While certain fatty acid species are readily accumulated in native microbial metabolic routes, other fatty acid species are scarce, and host strains need to be metabolically engineered for their high-level production. We report the metabolic engineering of Pichia pastoris to produce palmitoleic acid from glucose and discuss the beneficial and detrimental engineering steps in detail. Fatty acid secretion was achieved through the deletion of fatty acyl-CoA synthetases and overexpression of the truncated E. coli thioesterase ‘TesA. The best strains secreted &gt;1 g/L free fatty acids into the culture medium. Additionally, the introduction of C16-specific ∆9-desaturases and fatty acid synthases, coupled with improved cultivation conditions, increased the palmitoleic acid content from 5.5% to 22%.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering10121412</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Fatty acids ; Fermentation ; Industrial microorganisms ; Methods ; Microbiological synthesis ; Physiological aspects ; Production processes ; Yeast fungi</subject><ispartof>Bioengineering (Basel), 2023-12, Vol.10 (12)</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kobalter, Simon</creatorcontrib><creatorcontrib>Voit, Alena</creatorcontrib><creatorcontrib>Bekerle-Bogner, Myria</creatorcontrib><creatorcontrib>Rudalija, Haris</creatorcontrib><creatorcontrib>Haas, Anne</creatorcontrib><creatorcontrib>Wriessnegger, Tamara</creatorcontrib><creatorcontrib>Pichler, Harald</creatorcontrib><title>Tuning Fatty Acid Profile and Yield in IPichia pastoris/I</title><title>Bioengineering (Basel)</title><description>Fatty acids have been supplied for diverse non-food, industrial applications from plant oils and animal fats for many decades. Due to the massively increasing world population demanding a nutritious diet and the thrive to provide feedstocks for industrial production lines in a sustainable way, i.e., independent from food supply chains, alternative fatty acid sources have massively gained in importance. Carbohydrate-rich side-streams of agricultural production, e.g., molasses, lignocellulosic waste, glycerol from biodiesel production, and even CO[sub.2] , are considered and employed as carbon sources for the fermentative accumulation of fatty acids in selected microbial hosts. While certain fatty acid species are readily accumulated in native microbial metabolic routes, other fatty acid species are scarce, and host strains need to be metabolically engineered for their high-level production. We report the metabolic engineering of Pichia pastoris to produce palmitoleic acid from glucose and discuss the beneficial and detrimental engineering steps in detail. Fatty acid secretion was achieved through the deletion of fatty acyl-CoA synthetases and overexpression of the truncated E. coli thioesterase ‘TesA. The best strains secreted &gt;1 g/L free fatty acids into the culture medium. Additionally, the introduction of C16-specific ∆9-desaturases and fatty acid synthases, coupled with improved cultivation conditions, increased the palmitoleic acid content from 5.5% to 22%.</description><subject>Fatty acids</subject><subject>Fermentation</subject><subject>Industrial microorganisms</subject><subject>Methods</subject><subject>Microbiological synthesis</subject><subject>Physiological aspects</subject><subject>Production processes</subject><subject>Yeast fungi</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNptjzFPwzAUhC0EElXpX0CWmNP62Y4dj1VFIVIlOmRhqhz7JTyUOigJA_-eIBg6oBvuhu9OOsbuQayVcmJTU4-ppYQ4UGpBgAQN8ootpBImy1Wury_yLVuN47sQApTMpdEL5qrPNBf53k_TF98Givw49A11yH2K_JWwi5wSL48U3sjzDz9O_UDjprxjN43vRlz9-ZJV-8dq95wdXp7K3faQtcbmmcqVlQ6t1hC1sXXwOmKRA5jQBAzaQ21NlFIGLxEkGl0464vopWugiaCW7OF3tvUdnig1_TT4cKYxnLbWWu3MfGym1v9QsyKeKfQJfx5dFr4BCOhbUQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kobalter, Simon</creator><creator>Voit, Alena</creator><creator>Bekerle-Bogner, Myria</creator><creator>Rudalija, Haris</creator><creator>Haas, Anne</creator><creator>Wriessnegger, Tamara</creator><creator>Pichler, Harald</creator><general>MDPI AG</general><scope/></search><sort><creationdate>20231201</creationdate><title>Tuning Fatty Acid Profile and Yield in IPichia pastoris/I</title><author>Kobalter, Simon ; Voit, Alena ; Bekerle-Bogner, Myria ; Rudalija, Haris ; Haas, Anne ; Wriessnegger, Tamara ; Pichler, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g675-353729e7441d467bca4de85116cfcec4a1b76d222ca2e12e64897a8da29f1fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fatty acids</topic><topic>Fermentation</topic><topic>Industrial microorganisms</topic><topic>Methods</topic><topic>Microbiological synthesis</topic><topic>Physiological aspects</topic><topic>Production processes</topic><topic>Yeast fungi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobalter, Simon</creatorcontrib><creatorcontrib>Voit, Alena</creatorcontrib><creatorcontrib>Bekerle-Bogner, Myria</creatorcontrib><creatorcontrib>Rudalija, Haris</creatorcontrib><creatorcontrib>Haas, Anne</creatorcontrib><creatorcontrib>Wriessnegger, Tamara</creatorcontrib><creatorcontrib>Pichler, Harald</creatorcontrib><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobalter, Simon</au><au>Voit, Alena</au><au>Bekerle-Bogner, Myria</au><au>Rudalija, Haris</au><au>Haas, Anne</au><au>Wriessnegger, Tamara</au><au>Pichler, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Fatty Acid Profile and Yield in IPichia pastoris/I</atitle><jtitle>Bioengineering (Basel)</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>10</volume><issue>12</issue><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>Fatty acids have been supplied for diverse non-food, industrial applications from plant oils and animal fats for many decades. Due to the massively increasing world population demanding a nutritious diet and the thrive to provide feedstocks for industrial production lines in a sustainable way, i.e., independent from food supply chains, alternative fatty acid sources have massively gained in importance. Carbohydrate-rich side-streams of agricultural production, e.g., molasses, lignocellulosic waste, glycerol from biodiesel production, and even CO[sub.2] , are considered and employed as carbon sources for the fermentative accumulation of fatty acids in selected microbial hosts. While certain fatty acid species are readily accumulated in native microbial metabolic routes, other fatty acid species are scarce, and host strains need to be metabolically engineered for their high-level production. We report the metabolic engineering of Pichia pastoris to produce palmitoleic acid from glucose and discuss the beneficial and detrimental engineering steps in detail. Fatty acid secretion was achieved through the deletion of fatty acyl-CoA synthetases and overexpression of the truncated E. coli thioesterase ‘TesA. The best strains secreted &gt;1 g/L free fatty acids into the culture medium. Additionally, the introduction of C16-specific ∆9-desaturases and fatty acid synthases, coupled with improved cultivation conditions, increased the palmitoleic acid content from 5.5% to 22%.</abstract><pub>MDPI AG</pub><doi>10.3390/bioengineering10121412</doi></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2023-12, Vol.10 (12)
issn 2306-5354
2306-5354
language eng
recordid cdi_gale_infotracmisc_A777496535
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Fatty acids
Fermentation
Industrial microorganisms
Methods
Microbiological synthesis
Physiological aspects
Production processes
Yeast fungi
title Tuning Fatty Acid Profile and Yield in IPichia pastoris/I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Fatty%20Acid%20Profile%20and%20Yield%20in%20IPichia%20pastoris/I&rft.jtitle=Bioengineering%20(Basel)&rft.au=Kobalter,%20Simon&rft.date=2023-12-01&rft.volume=10&rft.issue=12&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering10121412&rft_dat=%3Cgale%3EA777496535%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A777496535&rfr_iscdi=true