Get to Know Your Neighbors: Characterization of Close IBacillus anthracis/I Isolates and Toxin Profile Diversity in the IBacillus cereus/I Group

Unexpected atypical isolates of Bacillus cereus s.l. occasionally challenge conventional microbiology and even the most advanced techniques for anthrax detection. For anticipating and gaining trust, 65 isolates of Bacillus cereus s.l. of diverse origin were sequenced and characterized. The BTyper3 t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2023-11, Vol.11 (11)
Hauptverfasser: Abdelli, Mehdi, Falaise, Charlotte, Morineaux-Hilaire, Valérie, Cumont, Amélie, Taysse, Laurent, Raynaud, Françoise, Ramisse, Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unexpected atypical isolates of Bacillus cereus s.l. occasionally challenge conventional microbiology and even the most advanced techniques for anthrax detection. For anticipating and gaining trust, 65 isolates of Bacillus cereus s.l. of diverse origin were sequenced and characterized. The BTyper3 tool was used for assignation to genomospecies B. mosaicus (34), B. cereus s.s (29) and B. toyonensis (2), as well as virulence factors and toxin profiling. None of them carried any capsule or anthrax-toxin genes. All harbored the non-hemolytic toxin nheABC and sphygomyelinase spH genes, whereas 41 (63%), 30 (46%), 11 (17%) and 6 (9%) isolates harbored cytK-2, hblABCD, cesABCD and at least one insecticidal toxin gene, respectively. Matrix-assisted laser desorption ionization-time of flight mass spectrometry confirmed the production of cereulide (ces genes). Phylogeny inferred from single-nucleotide polymorphisms positioned isolates relative to the B. anthracis lineage. One isolate (BC38B) was of particular interest as it appeared to be the closest B. anthracis neighbor described so far. It harbored a large plasmid similar to other previously described B. cereus s.l. megaplasmids and at a lower extent to pXO1. Whereas bacterial collection is enriched, these high-quality public genetic data offer additional knowledge for better risk assessment using future NGS-based technologies of detection.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms11112721