A Deep Learning Solution for Multimedia Conference System Assisted by Cloud Computing

With the development of information technology, more and more people use multimedia conference system to communicate or work across regions. In this article, an ultra-reliable and low-latency solution based on Deep Learning and assisted by Cloud Computing for multimedia conference system, called UCC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information technology and web engineering 2018-07, Vol.13 (3), p.85-98
Hauptverfasser: Zhang, Wei, Shi, Huiling, Lu, Xinming, Zhou, Longquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 3
container_start_page 85
container_title International journal of information technology and web engineering
container_volume 13
creator Zhang, Wei
Shi, Huiling
Lu, Xinming
Zhou, Longquan
description With the development of information technology, more and more people use multimedia conference system to communicate or work across regions. In this article, an ultra-reliable and low-latency solution based on Deep Learning and assisted by Cloud Computing for multimedia conference system, called UCCMCS, is designed and implemented. In UCCMCS, there are two-tiers in its data distribution structure which combines the advantages of cloud computing. And according to the requirements of ultra-reliability and low-latency, a bandwidth optimization model is proposed to improve the transmission efficiency of multimedia data so as to reduce the delay of the system. In order to improve the reliability of data distribution, the help of cloud computing node is used to carry out the retransmission of lost data. the experimental results show UCCMCS could improve the reliability and reduce the latency of the multimedia data distribution in multimedia conference system.
doi_str_mv 10.4018/IJITWE.2018070106
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A759603313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759603313</galeid><sourcerecordid>A759603313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-5e09369131a30535321d81333a2f4a76eb308ddeb7274d9c32f95f44966f1d083</originalsourceid><addsrcrecordid>eNp1UU1LAzEUDKKgVn-At4Dn1mST7Mex1I9WKh5s8RjSzUuJ7CZrsnvovzdStQhKDhkeM28eMwhdUTLhhJY3i8fF6vVukiVMCkJJfoTOqBB8TIlgxz-Yi1N0HuMbIZwzRs7QeopvATq8BBWcdVv84puht95h4wN-GpretqCtwjPvDARwNeCXXeyhxdMYbQIab3Z41vhBJ07bJbHbXqATo5oIl1__CK3v71az-Xj5_LCYTZfjmhPRjwWQiuUVZVSxdKZgGdUlZYypzHBV5LBhpNQaNkVWcF3VLDOVMJxXeW6oJiUboev93i749wFiL9_8EFyylFnFaMmrohAH1lY1IK0zvg-qbm2s5bQQVU4YS6YjNPmDlZ6G1tbegbFp_ktA94I6-BgDGNkF26qwk5TIz1LkvhR5KCVp5nuN3drDrdDJ7_zld_4y5f__omT_AdfnlHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931849775</pqid></control><display><type>article</type><title>A Deep Learning Solution for Multimedia Conference System Assisted by Cloud Computing</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Wei ; Shi, Huiling ; Lu, Xinming ; Zhou, Longquan</creator><creatorcontrib>Zhang, Wei ; Shi, Huiling ; Lu, Xinming ; Zhou, Longquan</creatorcontrib><description>With the development of information technology, more and more people use multimedia conference system to communicate or work across regions. In this article, an ultra-reliable and low-latency solution based on Deep Learning and assisted by Cloud Computing for multimedia conference system, called UCCMCS, is designed and implemented. In UCCMCS, there are two-tiers in its data distribution structure which combines the advantages of cloud computing. And according to the requirements of ultra-reliability and low-latency, a bandwidth optimization model is proposed to improve the transmission efficiency of multimedia data so as to reduce the delay of the system. In order to improve the reliability of data distribution, the help of cloud computing node is used to carry out the retransmission of lost data. the experimental results show UCCMCS could improve the reliability and reduce the latency of the multimedia data distribution in multimedia conference system.</description><identifier>ISSN: 1554-1045</identifier><identifier>EISSN: 1554-1053</identifier><identifier>DOI: 10.4018/IJITWE.2018070106</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Bandwidths ; Cloud computing ; Computer networks ; Computer science ; Conferencing systems ; Data integrity ; Deep learning ; Design ; Efficiency ; Engineering ; Information technology ; Internet ; Multimedia ; Optimization ; Optimization models ; Performance evaluation ; Reliability ; Streaming media ; Supercomputers ; Transmission efficiency</subject><ispartof>International journal of information technology and web engineering, 2018-07, Vol.13 (3), p.85-98</ispartof><rights>COPYRIGHT 2018 IGI Global</rights><rights>Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-5e09369131a30535321d81333a2f4a76eb308ddeb7274d9c32f95f44966f1d083</citedby><cites>FETCH-LOGICAL-c405t-5e09369131a30535321d81333a2f4a76eb308ddeb7274d9c32f95f44966f1d083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931849775?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Shi, Huiling</creatorcontrib><creatorcontrib>Lu, Xinming</creatorcontrib><creatorcontrib>Zhou, Longquan</creatorcontrib><title>A Deep Learning Solution for Multimedia Conference System Assisted by Cloud Computing</title><title>International journal of information technology and web engineering</title><description>With the development of information technology, more and more people use multimedia conference system to communicate or work across regions. In this article, an ultra-reliable and low-latency solution based on Deep Learning and assisted by Cloud Computing for multimedia conference system, called UCCMCS, is designed and implemented. In UCCMCS, there are two-tiers in its data distribution structure which combines the advantages of cloud computing. And according to the requirements of ultra-reliability and low-latency, a bandwidth optimization model is proposed to improve the transmission efficiency of multimedia data so as to reduce the delay of the system. In order to improve the reliability of data distribution, the help of cloud computing node is used to carry out the retransmission of lost data. the experimental results show UCCMCS could improve the reliability and reduce the latency of the multimedia data distribution in multimedia conference system.</description><subject>Bandwidths</subject><subject>Cloud computing</subject><subject>Computer networks</subject><subject>Computer science</subject><subject>Conferencing systems</subject><subject>Data integrity</subject><subject>Deep learning</subject><subject>Design</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Information technology</subject><subject>Internet</subject><subject>Multimedia</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Performance evaluation</subject><subject>Reliability</subject><subject>Streaming media</subject><subject>Supercomputers</subject><subject>Transmission efficiency</subject><issn>1554-1045</issn><issn>1554-1053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1LAzEUDKKgVn-At4Dn1mST7Mex1I9WKh5s8RjSzUuJ7CZrsnvovzdStQhKDhkeM28eMwhdUTLhhJY3i8fF6vVukiVMCkJJfoTOqBB8TIlgxz-Yi1N0HuMbIZwzRs7QeopvATq8BBWcdVv84puht95h4wN-GpretqCtwjPvDARwNeCXXeyhxdMYbQIab3Z41vhBJ07bJbHbXqATo5oIl1__CK3v71az-Xj5_LCYTZfjmhPRjwWQiuUVZVSxdKZgGdUlZYypzHBV5LBhpNQaNkVWcF3VLDOVMJxXeW6oJiUboev93i749wFiL9_8EFyylFnFaMmrohAH1lY1IK0zvg-qbm2s5bQQVU4YS6YjNPmDlZ6G1tbegbFp_ktA94I6-BgDGNkF26qwk5TIz1LkvhR5KCVp5nuN3drDrdDJ7_zld_4y5f__omT_AdfnlHg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhang, Wei</creator><creator>Shi, Huiling</creator><creator>Lu, Xinming</creator><creator>Zhou, Longquan</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180701</creationdate><title>A Deep Learning Solution for Multimedia Conference System Assisted by Cloud Computing</title><author>Zhang, Wei ; Shi, Huiling ; Lu, Xinming ; Zhou, Longquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-5e09369131a30535321d81333a2f4a76eb308ddeb7274d9c32f95f44966f1d083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bandwidths</topic><topic>Cloud computing</topic><topic>Computer networks</topic><topic>Computer science</topic><topic>Conferencing systems</topic><topic>Data integrity</topic><topic>Deep learning</topic><topic>Design</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Information technology</topic><topic>Internet</topic><topic>Multimedia</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Performance evaluation</topic><topic>Reliability</topic><topic>Streaming media</topic><topic>Supercomputers</topic><topic>Transmission efficiency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Shi, Huiling</creatorcontrib><creatorcontrib>Lu, Xinming</creatorcontrib><creatorcontrib>Zhou, Longquan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of information technology and web engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wei</au><au>Shi, Huiling</au><au>Lu, Xinming</au><au>Zhou, Longquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning Solution for Multimedia Conference System Assisted by Cloud Computing</atitle><jtitle>International journal of information technology and web engineering</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>85</spage><epage>98</epage><pages>85-98</pages><issn>1554-1045</issn><eissn>1554-1053</eissn><abstract>With the development of information technology, more and more people use multimedia conference system to communicate or work across regions. In this article, an ultra-reliable and low-latency solution based on Deep Learning and assisted by Cloud Computing for multimedia conference system, called UCCMCS, is designed and implemented. In UCCMCS, there are two-tiers in its data distribution structure which combines the advantages of cloud computing. And according to the requirements of ultra-reliability and low-latency, a bandwidth optimization model is proposed to improve the transmission efficiency of multimedia data so as to reduce the delay of the system. In order to improve the reliability of data distribution, the help of cloud computing node is used to carry out the retransmission of lost data. the experimental results show UCCMCS could improve the reliability and reduce the latency of the multimedia data distribution in multimedia conference system.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJITWE.2018070106</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1554-1045
ispartof International journal of information technology and web engineering, 2018-07, Vol.13 (3), p.85-98
issn 1554-1045
1554-1053
language eng
recordid cdi_gale_infotracmisc_A759603313
source ProQuest Central UK/Ireland; ProQuest Central
subjects Bandwidths
Cloud computing
Computer networks
Computer science
Conferencing systems
Data integrity
Deep learning
Design
Efficiency
Engineering
Information technology
Internet
Multimedia
Optimization
Optimization models
Performance evaluation
Reliability
Streaming media
Supercomputers
Transmission efficiency
title A Deep Learning Solution for Multimedia Conference System Assisted by Cloud Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning%20Solution%20for%20Multimedia%20Conference%20System%20Assisted%20by%20Cloud%20Computing&rft.jtitle=International%20journal%20of%20information%20technology%20and%20web%20engineering&rft.au=Zhang,%20Wei&rft.date=2018-07-01&rft.volume=13&rft.issue=3&rft.spage=85&rft.epage=98&rft.pages=85-98&rft.issn=1554-1045&rft.eissn=1554-1053&rft_id=info:doi/10.4018/IJITWE.2018070106&rft_dat=%3Cgale_proqu%3EA759603313%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931849775&rft_id=info:pmid/&rft_galeid=A759603313&rfr_iscdi=true