MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing

Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information technology and web engineering 2022-01, Vol.17 (1), p.1-17
Hauptverfasser: Li, Qirui, Peng, Zhiping, Cui, Delong, Lin, Jianpeng, He, Jieguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title International journal of information technology and web engineering
container_volume 17
creator Li, Qirui
Peng, Zhiping
Cui, Delong
Lin, Jianpeng
He, Jieguang
description Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.
doi_str_mv 10.4018/IJITWE.310053
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A759602783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759602783</galeid><sourcerecordid>A759602783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e8991fb43c9287c8d786366e7be89388b1ad4b3ff341d135a420dede70c621353</originalsourceid><addsrcrecordid>eNptkc9PgzAUx4nRxDk9em_imdnSAsUb4nQY3A7OeGxKKawTKPLjoH-9naiLydJD3-v7vNf2-7WsSwRnBCJ6HT_G69f5DCMIXXxkTZDrEhuZ-PgvJu6pddZ1WwgJwRhOrPhpcbdcJjcgBLe8Fxuw5t0bWDW9qtQn75WuwbPYyGwoVV2AsCx0q_pNBVQNolIPGYh01Qy9KZ5bJzkvO3nxs0-tl_v5OlrYyeohjsLEFpjQ3pY0CFCeEiwCh_qCZj71sOdJPzUVTGmKeEZSnOeYoAxhlxMHZjKTPhSeY3I8ta7GuU2r3wfZ9Wyrh7Y2VzIncMw3AxQEe6rgpWSqznXfclGpTrDQdwMPOj7FhpodoMzKZKWErmWuzPm_BntsEK3uulbmrGlVxdsPhiDbmcBGE9hoguGjkVeF2r9zmbCQfcvNdnKzX7kPzkA-_gLXh4ym</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925549199</pqid></control><display><type>article</type><title>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Li, Qirui ; Peng, Zhiping ; Cui, Delong ; Lin, Jianpeng ; He, Jieguang</creator><creatorcontrib>Li, Qirui ; Peng, Zhiping ; Cui, Delong ; Lin, Jianpeng ; He, Jieguang</creatorcontrib><description>Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.</description><identifier>ISSN: 1554-1045</identifier><identifier>EISSN: 1554-1053</identifier><identifier>DOI: 10.4018/IJITWE.310053</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Artificial neural networks ; Batch processing ; Cloud computing ; Completion time ; Energy consumption ; Machine learning ; Multiple objective analysis ; Neural networks ; Optimization ; Task scheduling</subject><ispartof>International journal of information technology and web engineering, 2022-01, Vol.17 (1), p.1-17</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-e8991fb43c9287c8d786366e7be89388b1ad4b3ff341d135a420dede70c621353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2925549199?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Li, Qirui</creatorcontrib><creatorcontrib>Peng, Zhiping</creatorcontrib><creatorcontrib>Cui, Delong</creatorcontrib><creatorcontrib>Lin, Jianpeng</creatorcontrib><creatorcontrib>He, Jieguang</creatorcontrib><title>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</title><title>International journal of information technology and web engineering</title><description>Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Batch processing</subject><subject>Cloud computing</subject><subject>Completion time</subject><subject>Energy consumption</subject><subject>Machine learning</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Task scheduling</subject><issn>1554-1045</issn><issn>1554-1053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc9PgzAUx4nRxDk9em_imdnSAsUb4nQY3A7OeGxKKawTKPLjoH-9naiLydJD3-v7vNf2-7WsSwRnBCJ6HT_G69f5DCMIXXxkTZDrEhuZ-PgvJu6pddZ1WwgJwRhOrPhpcbdcJjcgBLe8Fxuw5t0bWDW9qtQn75WuwbPYyGwoVV2AsCx0q_pNBVQNolIPGYh01Qy9KZ5bJzkvO3nxs0-tl_v5OlrYyeohjsLEFpjQ3pY0CFCeEiwCh_qCZj71sOdJPzUVTGmKeEZSnOeYoAxhlxMHZjKTPhSeY3I8ta7GuU2r3wfZ9Wyrh7Y2VzIncMw3AxQEe6rgpWSqznXfclGpTrDQdwMPOj7FhpodoMzKZKWErmWuzPm_BntsEK3uulbmrGlVxdsPhiDbmcBGE9hoguGjkVeF2r9zmbCQfcvNdnKzX7kPzkA-_gLXh4ym</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Li, Qirui</creator><creator>Peng, Zhiping</creator><creator>Cui, Delong</creator><creator>Lin, Jianpeng</creator><creator>He, Jieguang</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220101</creationdate><title>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</title><author>Li, Qirui ; Peng, Zhiping ; Cui, Delong ; Lin, Jianpeng ; He, Jieguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e8991fb43c9287c8d786366e7be89388b1ad4b3ff341d135a420dede70c621353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Batch processing</topic><topic>Cloud computing</topic><topic>Completion time</topic><topic>Energy consumption</topic><topic>Machine learning</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qirui</creatorcontrib><creatorcontrib>Peng, Zhiping</creatorcontrib><creatorcontrib>Cui, Delong</creatorcontrib><creatorcontrib>Lin, Jianpeng</creatorcontrib><creatorcontrib>He, Jieguang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of information technology and web engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qirui</au><au>Peng, Zhiping</au><au>Cui, Delong</au><au>Lin, Jianpeng</au><au>He, Jieguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</atitle><jtitle>International journal of information technology and web engineering</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1554-1045</issn><eissn>1554-1053</eissn><abstract>Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJITWE.310053</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-1045
ispartof International journal of information technology and web engineering, 2022-01, Vol.17 (1), p.1-17
issn 1554-1045
1554-1053
language eng
recordid cdi_gale_infotracmisc_A759602783
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Artificial neural networks
Batch processing
Cloud computing
Completion time
Energy consumption
Machine learning
Multiple objective analysis
Neural networks
Optimization
Task scheduling
title MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MHDNNL:%20A%20Batch%20Task%20Optimization%20Scheduling%20Algorithm%20in%20Cloud%20Computing&rft.jtitle=International%20journal%20of%20information%20technology%20and%20web%20engineering&rft.au=Li,%20Qirui&rft.date=2022-01-01&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1554-1045&rft.eissn=1554-1053&rft_id=info:doi/10.4018/IJITWE.310053&rft_dat=%3Cgale_proqu%3EA759602783%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925549199&rft_id=info:pmid/&rft_galeid=A759602783&rfr_iscdi=true