MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing
Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and...
Gespeichert in:
Veröffentlicht in: | International journal of information technology and web engineering 2022-01, Vol.17 (1), p.1-17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of information technology and web engineering |
container_volume | 17 |
creator | Li, Qirui Peng, Zhiping Cui, Delong Lin, Jianpeng He, Jieguang |
description | Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency. |
doi_str_mv | 10.4018/IJITWE.310053 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracmisc_A759602783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759602783</galeid><sourcerecordid>A759602783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-e8991fb43c9287c8d786366e7be89388b1ad4b3ff341d135a420dede70c621353</originalsourceid><addsrcrecordid>eNptkc9PgzAUx4nRxDk9em_imdnSAsUb4nQY3A7OeGxKKawTKPLjoH-9naiLydJD3-v7vNf2-7WsSwRnBCJ6HT_G69f5DCMIXXxkTZDrEhuZ-PgvJu6pddZ1WwgJwRhOrPhpcbdcJjcgBLe8Fxuw5t0bWDW9qtQn75WuwbPYyGwoVV2AsCx0q_pNBVQNolIPGYh01Qy9KZ5bJzkvO3nxs0-tl_v5OlrYyeohjsLEFpjQ3pY0CFCeEiwCh_qCZj71sOdJPzUVTGmKeEZSnOeYoAxhlxMHZjKTPhSeY3I8ta7GuU2r3wfZ9Wyrh7Y2VzIncMw3AxQEe6rgpWSqznXfclGpTrDQdwMPOj7FhpodoMzKZKWErmWuzPm_BntsEK3uulbmrGlVxdsPhiDbmcBGE9hoguGjkVeF2r9zmbCQfcvNdnKzX7kPzkA-_gLXh4ym</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925549199</pqid></control><display><type>article</type><title>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Li, Qirui ; Peng, Zhiping ; Cui, Delong ; Lin, Jianpeng ; He, Jieguang</creator><creatorcontrib>Li, Qirui ; Peng, Zhiping ; Cui, Delong ; Lin, Jianpeng ; He, Jieguang</creatorcontrib><description>Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.</description><identifier>ISSN: 1554-1045</identifier><identifier>EISSN: 1554-1053</identifier><identifier>DOI: 10.4018/IJITWE.310053</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Artificial neural networks ; Batch processing ; Cloud computing ; Completion time ; Energy consumption ; Machine learning ; Multiple objective analysis ; Neural networks ; Optimization ; Task scheduling</subject><ispartof>International journal of information technology and web engineering, 2022-01, Vol.17 (1), p.1-17</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-e8991fb43c9287c8d786366e7be89388b1ad4b3ff341d135a420dede70c621353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2925549199?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Li, Qirui</creatorcontrib><creatorcontrib>Peng, Zhiping</creatorcontrib><creatorcontrib>Cui, Delong</creatorcontrib><creatorcontrib>Lin, Jianpeng</creatorcontrib><creatorcontrib>He, Jieguang</creatorcontrib><title>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</title><title>International journal of information technology and web engineering</title><description>Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Batch processing</subject><subject>Cloud computing</subject><subject>Completion time</subject><subject>Energy consumption</subject><subject>Machine learning</subject><subject>Multiple objective analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Task scheduling</subject><issn>1554-1045</issn><issn>1554-1053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc9PgzAUx4nRxDk9em_imdnSAsUb4nQY3A7OeGxKKawTKPLjoH-9naiLydJD3-v7vNf2-7WsSwRnBCJ6HT_G69f5DCMIXXxkTZDrEhuZ-PgvJu6pddZ1WwgJwRhOrPhpcbdcJjcgBLe8Fxuw5t0bWDW9qtQn75WuwbPYyGwoVV2AsCx0q_pNBVQNolIPGYh01Qy9KZ5bJzkvO3nxs0-tl_v5OlrYyeohjsLEFpjQ3pY0CFCeEiwCh_qCZj71sOdJPzUVTGmKeEZSnOeYoAxhlxMHZjKTPhSeY3I8ta7GuU2r3wfZ9Wyrh7Y2VzIncMw3AxQEe6rgpWSqznXfclGpTrDQdwMPOj7FhpodoMzKZKWErmWuzPm_BntsEK3uulbmrGlVxdsPhiDbmcBGE9hoguGjkVeF2r9zmbCQfcvNdnKzX7kPzkA-_gLXh4ym</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Li, Qirui</creator><creator>Peng, Zhiping</creator><creator>Cui, Delong</creator><creator>Lin, Jianpeng</creator><creator>He, Jieguang</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220101</creationdate><title>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</title><author>Li, Qirui ; Peng, Zhiping ; Cui, Delong ; Lin, Jianpeng ; He, Jieguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-e8991fb43c9287c8d786366e7be89388b1ad4b3ff341d135a420dede70c621353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Batch processing</topic><topic>Cloud computing</topic><topic>Completion time</topic><topic>Energy consumption</topic><topic>Machine learning</topic><topic>Multiple objective analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Task scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qirui</creatorcontrib><creatorcontrib>Peng, Zhiping</creatorcontrib><creatorcontrib>Cui, Delong</creatorcontrib><creatorcontrib>Lin, Jianpeng</creatorcontrib><creatorcontrib>He, Jieguang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of information technology and web engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qirui</au><au>Peng, Zhiping</au><au>Cui, Delong</au><au>Lin, Jianpeng</au><au>He, Jieguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing</atitle><jtitle>International journal of information technology and web engineering</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1554-1045</issn><eissn>1554-1053</eissn><abstract>Task optimization scheduling is one of the key concerns of both cloud service providers (CSPs) and cloud users. The CSPs hope to reduce the energy consumption of executing tasks to save costs, while the users are more concerned about shorter task completion time. In cloud computing, multi-queue and multi-cluster (MQMC) is a common resource configuration mode, and batch is a common task commission mode. The task scheduling (TS) in these modes is a multi-objective optimization (MOO) problem, and it is difficult to get the optimal solution. Therefore, the authors proposed a MOO scheduling algorithm for this model based on multiple heterogeneous deep neural networks learning (MHDNNL). The proposed algorithm adopts a collaborative exploration mechanism to generate the samples and use the memory replay mechanism to train. Experimental results show that the proposed algorithm outperforms the benchmark algorithms in minimizing energy consumption and task latency.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJITWE.310053</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-1045 |
ispartof | International journal of information technology and web engineering, 2022-01, Vol.17 (1), p.1-17 |
issn | 1554-1045 1554-1053 |
language | eng |
recordid | cdi_gale_infotracmisc_A759602783 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Artificial neural networks Batch processing Cloud computing Completion time Energy consumption Machine learning Multiple objective analysis Neural networks Optimization Task scheduling |
title | MHDNNL: A Batch Task Optimization Scheduling Algorithm in Cloud Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MHDNNL:%20A%20Batch%20Task%20Optimization%20Scheduling%20Algorithm%20in%20Cloud%20Computing&rft.jtitle=International%20journal%20of%20information%20technology%20and%20web%20engineering&rft.au=Li,%20Qirui&rft.date=2022-01-01&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1554-1045&rft.eissn=1554-1053&rft_id=info:doi/10.4018/IJITWE.310053&rft_dat=%3Cgale_proqu%3EA759602783%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2925549199&rft_id=info:pmid/&rft_galeid=A759602783&rfr_iscdi=true |