Arabic Biomedical Community Question Answering Based on Contextualized Embeddings
Community question answering has become increasingly important as they are practical for seeking and sharing information. Applying deep learning models often leads to good performance, but it requires an extensive amount of annotated data, a problem exacerbated for languages suffering a scarcity of...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent information technologies 2021-07, Vol.17 (3), p.1-17 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | International journal of intelligent information technologies |
container_volume | 17 |
creator | El Adlouni, Yassine Nahnahi, Noureddine En El Alaoui, Said Ouatik Meknassi, Mohammed Rodríguez, Horacio Alami, Nabil |
description | Community question answering has become increasingly important as they are practical for seeking and sharing information. Applying deep learning models often leads to good performance, but it requires an extensive amount of annotated data, a problem exacerbated for languages suffering a scarcity of resources. Contextualized language representation models have gained success due to promising results obtained on a wide array of downstream natural language processing tasks such as text classification, textual entailment, and paraphrase identification. This paper presents a novel approach by fine-tuning contextualized embeddings for a medical domain community question answering task. The authors propose an architecture combining two neural models powered by pre-trained contextual embeddings to learn a sentence representation and thereafter fine-tuned on the task to compute a score used for both ranking and classification. The experimental results on SemEval Task 3 CQA show that the model significantly outperforms the state-of-the-art models by almost 2% for the '16 edition and 1% for the '17 edition. |
doi_str_mv | 10.4018/IJIIT.2021070102 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A759569810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759569810</galeid><sourcerecordid>A759569810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-5103a6e8ed9be7cff2f969cf75929a05d2bf41e3aa3bc5fb5d46eb869bcb87943</originalsourceid><addsrcrecordid>eNp1UdFKwzAUDaLgnL77WPC5M2matnncypwVQQbzOSRpMjLaZiYdOr_ezMmKoNyHXA7n3HtyDwC3CE5SiIr76qmqVpMEJgjmEMHkDIwQSYsYZxk5P_UkvwRX3m8gxAQnxQgsp44LI6OZsa2qjeRNVNq23XWm30fLnfK9sV007fy7cqZbRzPuVR0FqLRdrz76HW_MZ0DmrVB1HRj-Glxo3nh18_OOwevDfFU-xs8vi6qcPscS07yPCYKYZ6pQNRUql1onmmZU6pzQhHJI6kToFCnMORaSaEHqNFOiyKiQoshpisfg7jh36-zbwSjb2J3rwkqWUFSQNHyQDqw1bxQznba947I1XrJpWEUyWgQjYzD5gxWqVq2RtlPaBPyXAB4F0lnvndJs60zL3Z4hyA55sO882JBHkCyOErM2g1Uj2XB6djo9W_43B-X4CwzTlMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918545329</pqid></control><display><type>article</type><title>Arabic Biomedical Community Question Answering Based on Contextualized Embeddings</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>El Adlouni, Yassine ; Nahnahi, Noureddine En ; El Alaoui, Said Ouatik ; Meknassi, Mohammed ; Rodríguez, Horacio ; Alami, Nabil</creator><creatorcontrib>El Adlouni, Yassine ; Nahnahi, Noureddine En ; El Alaoui, Said Ouatik ; Meknassi, Mohammed ; Rodríguez, Horacio ; Alami, Nabil</creatorcontrib><description>Community question answering has become increasingly important as they are practical for seeking and sharing information. Applying deep learning models often leads to good performance, but it requires an extensive amount of annotated data, a problem exacerbated for languages suffering a scarcity of resources. Contextualized language representation models have gained success due to promising results obtained on a wide array of downstream natural language processing tasks such as text classification, textual entailment, and paraphrase identification. This paper presents a novel approach by fine-tuning contextualized embeddings for a medical domain community question answering task. The authors propose an architecture combining two neural models powered by pre-trained contextual embeddings to learn a sentence representation and thereafter fine-tuned on the task to compute a score used for both ranking and classification. The experimental results on SemEval Task 3 CQA show that the model significantly outperforms the state-of-the-art models by almost 2% for the '16 edition and 1% for the '17 edition.</description><identifier>ISSN: 1548-3657</identifier><identifier>EISSN: 1548-3665</identifier><identifier>DOI: 10.4018/IJIIT.2021070102</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Analysis ; Computational linguistics ; Language processing ; Natural language interfaces ; Rankings</subject><ispartof>International journal of intelligent information technologies, 2021-07, Vol.17 (3), p.1-17</ispartof><rights>COPYRIGHT 2021 IGI Global</rights><rights>Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1641-1501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918545329?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72341</link.rule.ids></links><search><creatorcontrib>El Adlouni, Yassine</creatorcontrib><creatorcontrib>Nahnahi, Noureddine En</creatorcontrib><creatorcontrib>El Alaoui, Said Ouatik</creatorcontrib><creatorcontrib>Meknassi, Mohammed</creatorcontrib><creatorcontrib>Rodríguez, Horacio</creatorcontrib><creatorcontrib>Alami, Nabil</creatorcontrib><title>Arabic Biomedical Community Question Answering Based on Contextualized Embeddings</title><title>International journal of intelligent information technologies</title><description>Community question answering has become increasingly important as they are practical for seeking and sharing information. Applying deep learning models often leads to good performance, but it requires an extensive amount of annotated data, a problem exacerbated for languages suffering a scarcity of resources. Contextualized language representation models have gained success due to promising results obtained on a wide array of downstream natural language processing tasks such as text classification, textual entailment, and paraphrase identification. This paper presents a novel approach by fine-tuning contextualized embeddings for a medical domain community question answering task. The authors propose an architecture combining two neural models powered by pre-trained contextual embeddings to learn a sentence representation and thereafter fine-tuned on the task to compute a score used for both ranking and classification. The experimental results on SemEval Task 3 CQA show that the model significantly outperforms the state-of-the-art models by almost 2% for the '16 edition and 1% for the '17 edition.</description><subject>Analysis</subject><subject>Computational linguistics</subject><subject>Language processing</subject><subject>Natural language interfaces</subject><subject>Rankings</subject><issn>1548-3657</issn><issn>1548-3665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UdFKwzAUDaLgnL77WPC5M2matnncypwVQQbzOSRpMjLaZiYdOr_ezMmKoNyHXA7n3HtyDwC3CE5SiIr76qmqVpMEJgjmEMHkDIwQSYsYZxk5P_UkvwRX3m8gxAQnxQgsp44LI6OZsa2qjeRNVNq23XWm30fLnfK9sV007fy7cqZbRzPuVR0FqLRdrz76HW_MZ0DmrVB1HRj-Glxo3nh18_OOwevDfFU-xs8vi6qcPscS07yPCYKYZ6pQNRUql1onmmZU6pzQhHJI6kToFCnMORaSaEHqNFOiyKiQoshpisfg7jh36-zbwSjb2J3rwkqWUFSQNHyQDqw1bxQznba947I1XrJpWEUyWgQjYzD5gxWqVq2RtlPaBPyXAB4F0lnvndJs60zL3Z4hyA55sO882JBHkCyOErM2g1Uj2XB6djo9W_43B-X4CwzTlMA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>El Adlouni, Yassine</creator><creator>Nahnahi, Noureddine En</creator><creator>El Alaoui, Said Ouatik</creator><creator>Meknassi, Mohammed</creator><creator>Rodríguez, Horacio</creator><creator>Alami, Nabil</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1641-1501</orcidid></search><sort><creationdate>20210701</creationdate><title>Arabic Biomedical Community Question Answering Based on Contextualized Embeddings</title><author>El Adlouni, Yassine ; Nahnahi, Noureddine En ; El Alaoui, Said Ouatik ; Meknassi, Mohammed ; Rodríguez, Horacio ; Alami, Nabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-5103a6e8ed9be7cff2f969cf75929a05d2bf41e3aa3bc5fb5d46eb869bcb87943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Computational linguistics</topic><topic>Language processing</topic><topic>Natural language interfaces</topic><topic>Rankings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Adlouni, Yassine</creatorcontrib><creatorcontrib>Nahnahi, Noureddine En</creatorcontrib><creatorcontrib>El Alaoui, Said Ouatik</creatorcontrib><creatorcontrib>Meknassi, Mohammed</creatorcontrib><creatorcontrib>Rodríguez, Horacio</creatorcontrib><creatorcontrib>Alami, Nabil</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of intelligent information technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Adlouni, Yassine</au><au>Nahnahi, Noureddine En</au><au>El Alaoui, Said Ouatik</au><au>Meknassi, Mohammed</au><au>Rodríguez, Horacio</au><au>Alami, Nabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabic Biomedical Community Question Answering Based on Contextualized Embeddings</atitle><jtitle>International journal of intelligent information technologies</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1548-3657</issn><eissn>1548-3665</eissn><abstract>Community question answering has become increasingly important as they are practical for seeking and sharing information. Applying deep learning models often leads to good performance, but it requires an extensive amount of annotated data, a problem exacerbated for languages suffering a scarcity of resources. Contextualized language representation models have gained success due to promising results obtained on a wide array of downstream natural language processing tasks such as text classification, textual entailment, and paraphrase identification. This paper presents a novel approach by fine-tuning contextualized embeddings for a medical domain community question answering task. The authors propose an architecture combining two neural models powered by pre-trained contextual embeddings to learn a sentence representation and thereafter fine-tuned on the task to compute a score used for both ranking and classification. The experimental results on SemEval Task 3 CQA show that the model significantly outperforms the state-of-the-art models by almost 2% for the '16 edition and 1% for the '17 edition.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJIIT.2021070102</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1641-1501</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-3657 |
ispartof | International journal of intelligent information technologies, 2021-07, Vol.17 (3), p.1-17 |
issn | 1548-3657 1548-3665 |
language | eng |
recordid | cdi_gale_infotracmisc_A759569810 |
source | ProQuest Central UK/Ireland; ProQuest Central |
subjects | Analysis Computational linguistics Language processing Natural language interfaces Rankings |
title | Arabic Biomedical Community Question Answering Based on Contextualized Embeddings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabic%20Biomedical%20Community%20Question%20Answering%20Based%20on%20Contextualized%20Embeddings&rft.jtitle=International%20journal%20of%20intelligent%20information%20technologies&rft.au=El%20Adlouni,%20Yassine&rft.date=2021-07-01&rft.volume=17&rft.issue=3&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1548-3657&rft.eissn=1548-3665&rft_id=info:doi/10.4018/IJIIT.2021070102&rft_dat=%3Cgale_cross%3EA759569810%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918545329&rft_id=info:pmid/&rft_galeid=A759569810&rfr_iscdi=true |