IStreptococcus salivarius/I 24SMBc Genome Analysis Reveals New Biosynthetic Gene Clusters Involved in Antimicrobial Effects on IStreptococcus pneumoniae/I and IStreptococcus pyogenes/I
Streptococcus salivarius 24SMBc is an oral probiotic with antimicrobial activity against the otopathogens Streptococcus pyogenes and Streptococcus pneumoniae. Clinical studies have reinforced its role in reducing the recurrence of upper respiratory tract infections (URTIs) and rebalancing the nasal...
Gespeichert in:
Veröffentlicht in: | Microorganisms (Basel) 2022-10, Vol.10 (10) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Streptococcus salivarius 24SMBc is an oral probiotic with antimicrobial activity against the otopathogens Streptococcus pyogenes and Streptococcus pneumoniae. Clinical studies have reinforced its role in reducing the recurrence of upper respiratory tract infections (URTIs) and rebalancing the nasal microbiota. In this study, for the first time, we characterized 24SMBc by whole genome sequencing and annotation; likewise, its antagonistic activity vs. Streptococcus pneumoniae and Streptococcus pyogenes was evaluated by in vitro co-aggregation and competitive adherence tests. The genome of 24SMBc comprises 2,131,204 bps with 1933 coding sequences (CDS), 44 tRNA, and six rRNA genes and it is categorized in 319 metabolic subsystems. Genome mining by BAGEL and antiSMASH tools predicted three novel biosynthetic gene clusters (BGCs): (i) a Blp class-IIc bacteriocin biosynthetic cluster, identifying two bacteriocins blpU and blpK; (ii) an ABC-type bacteriocin transporter; and (iii) a Type 3PKS (Polyketide synthase) involved in the mevalonate pathway for the isoprenoid biosynthetic process. Further analyses detected two additional genes for class-IIb bacteriocins and 24 putative adhesins and aggregation factors. Finally, in vitro assays of 24SMBc showed significant anti-adhesion and co-aggregation effects against Streptococcus pneumoniae strains, whereas it did not act as strongly against Streptococcus pyogenes. In conclusion, we identified a novel blpU-K bacteriocin-encoding BGC and two class-IIb bacteriocins involved in the activity against Streptococcus pneumoniae and Streptococcus pyogenes; likewise the type 3PKS pathway could have beneficial effects for the host including antimicrobial activity. Furthermore, the presence of adhesins and aggregation factors might be involved in the marked in vitro activity of co-aggregation with pathogens and competitive adherence, showing an additional antibacterial activity not solely related to metabolite production. These findings corroborate the antimicrobial activity of 24SMBc, especially against Streptococcus pneumoniae belonging to different serotypes, and further consolidate the use of this strain in URTIs in clinical settings. |
---|---|
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms10102042 |