Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange

The paper presents selected elements of a modelling methodology involving quantization, quantum calculations and dequantization on the example of the neural model of the Day-Ahead Market of the Polish Electricity Exchange. Based on the fundamental assumptions of quantum computing, a new method has b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control and Cybernetics 2021-07, Vol.50 (3), p.383-399
Hauptverfasser: Tchorzewsk, Jerzy, Rucinski, Dariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 3
container_start_page 383
container_title Control and Cybernetics
container_volume 50
creator Tchorzewsk, Jerzy
Rucinski, Dariusz
description The paper presents selected elements of a modelling methodology involving quantization, quantum calculations and dequantization on the example of the neural model of the Day-Ahead Market of the Polish Electricity Exchange. Based on the fundamental assumptions of quantum computing, a new method has been proposed here of converting the real numbers in decimal notation into quantum mixed numbers using the probability modules of quantum mixed number and the principle of superposition, along with a new method of quantum calculations using linear algebra and vectormatrix calculus, and the Artificial Neural Network was taught accordingly. Dequantization of quantum mixed numbers to real numbers in decimal notation using the new method of dequantization has been proposed as well. The operation of the methods introduced was shown on numerical examples.
doi_str_mv 10.2478/candc-2021-0023
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A736973134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A736973134</galeid><sourcerecordid>A736973134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2363-e5877c6d73df3c51171d81a1a5ca151bd6bc3b1f917f4b07796f457baaf12be43</originalsourceid><addsrcrecordid>eNp1kUFP3DAQRiPUSkWUc6-ReuIQsD1JnD1wQIgWJKQWCmdrYo8Tt4mDbEdl_z1Jl0pdicqHGX16z4f5suwTZ6eilM2ZRm90IZjgBWMCDrJDIQUrSiGbd__sH7LjGF3LSglQS2gOM7qb0ad5LJyPTy6QyUdK_WTyyeae5oBDPk6GBue7NUo95Qa3BfaEC4rhF6W_-fdpcLHPaSCdgtMubXN61j36jj5m7y0OkY5f51H2-OXq4fK6uP329eby4rbQAmooqGqk1LWRYCzoinPJTcORY6WRV7w1dauh5XbDpS1bJuWmtmUlW0TLRUslHGWfd_92OJBy3k4poB5d1OpCQr2RwGGlTt-glmdodHryZN2S7wkne8LCJHpOHc4xqpsf9_vs2Y7VYYoxkFVPwS2H2irO1NqV-tOVWrtSa1eLcb4zfuOQKBjqwrxdFvVzmoNfzvU_s2IADcAL-nWbIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Tchorzewsk, Jerzy ; Rucinski, Dariusz</creator><creatorcontrib>Tchorzewsk, Jerzy ; Rucinski, Dariusz</creatorcontrib><description>The paper presents selected elements of a modelling methodology involving quantization, quantum calculations and dequantization on the example of the neural model of the Day-Ahead Market of the Polish Electricity Exchange. Based on the fundamental assumptions of quantum computing, a new method has been proposed here of converting the real numbers in decimal notation into quantum mixed numbers using the probability modules of quantum mixed number and the principle of superposition, along with a new method of quantum calculations using linear algebra and vectormatrix calculus, and the Artificial Neural Network was taught accordingly. Dequantization of quantum mixed numbers to real numbers in decimal notation using the new method of dequantization has been proposed as well. The operation of the methods introduced was shown on numerical examples.</description><identifier>ISSN: 2720-4278</identifier><identifier>ISSN: 0324-8569</identifier><identifier>EISSN: 2720-4278</identifier><identifier>DOI: 10.2478/candc-2021-0023</identifier><language>eng</language><publisher>Sciendo</publisher><subject>Algebra ; artificial neural networks ; day-ahead market ; dequantization with ANN ; Methods ; neural modeling ; Neural networks ; Polish Electricity Exchange ; quantum computing ; quantum-inspired method ; system quantization</subject><ispartof>Control and Cybernetics, 2021-07, Vol.50 (3), p.383-399</ispartof><rights>COPYRIGHT 2021 Instytut Badan Systemowych Polskiej Akademii Nauk</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2363-e5877c6d73df3c51171d81a1a5ca151bd6bc3b1f917f4b07796f457baaf12be43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tchorzewsk, Jerzy</creatorcontrib><creatorcontrib>Rucinski, Dariusz</creatorcontrib><title>Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange</title><title>Control and Cybernetics</title><description>The paper presents selected elements of a modelling methodology involving quantization, quantum calculations and dequantization on the example of the neural model of the Day-Ahead Market of the Polish Electricity Exchange. Based on the fundamental assumptions of quantum computing, a new method has been proposed here of converting the real numbers in decimal notation into quantum mixed numbers using the probability modules of quantum mixed number and the principle of superposition, along with a new method of quantum calculations using linear algebra and vectormatrix calculus, and the Artificial Neural Network was taught accordingly. Dequantization of quantum mixed numbers to real numbers in decimal notation using the new method of dequantization has been proposed as well. The operation of the methods introduced was shown on numerical examples.</description><subject>Algebra</subject><subject>artificial neural networks</subject><subject>day-ahead market</subject><subject>dequantization with ANN</subject><subject>Methods</subject><subject>neural modeling</subject><subject>Neural networks</subject><subject>Polish Electricity Exchange</subject><subject>quantum computing</subject><subject>quantum-inspired method</subject><subject>system quantization</subject><issn>2720-4278</issn><issn>0324-8569</issn><issn>2720-4278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUFP3DAQRiPUSkWUc6-ReuIQsD1JnD1wQIgWJKQWCmdrYo8Tt4mDbEdl_z1Jl0pdicqHGX16z4f5suwTZ6eilM2ZRm90IZjgBWMCDrJDIQUrSiGbd__sH7LjGF3LSglQS2gOM7qb0ad5LJyPTy6QyUdK_WTyyeae5oBDPk6GBue7NUo95Qa3BfaEC4rhF6W_-fdpcLHPaSCdgtMubXN61j36jj5m7y0OkY5f51H2-OXq4fK6uP329eby4rbQAmooqGqk1LWRYCzoinPJTcORY6WRV7w1dauh5XbDpS1bJuWmtmUlW0TLRUslHGWfd_92OJBy3k4poB5d1OpCQr2RwGGlTt-glmdodHryZN2S7wkne8LCJHpOHc4xqpsf9_vs2Y7VYYoxkFVPwS2H2irO1NqV-tOVWrtSa1eLcb4zfuOQKBjqwrxdFvVzmoNfzvU_s2IADcAL-nWbIg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Tchorzewsk, Jerzy</creator><creator>Rucinski, Dariusz</creator><general>Sciendo</general><general>Instytut Badan Systemowych Polskiej Akademii Nauk</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210701</creationdate><title>Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange</title><author>Tchorzewsk, Jerzy ; Rucinski, Dariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2363-e5877c6d73df3c51171d81a1a5ca151bd6bc3b1f917f4b07796f457baaf12be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>artificial neural networks</topic><topic>day-ahead market</topic><topic>dequantization with ANN</topic><topic>Methods</topic><topic>neural modeling</topic><topic>Neural networks</topic><topic>Polish Electricity Exchange</topic><topic>quantum computing</topic><topic>quantum-inspired method</topic><topic>system quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tchorzewsk, Jerzy</creatorcontrib><creatorcontrib>Rucinski, Dariusz</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Control and Cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tchorzewsk, Jerzy</au><au>Rucinski, Dariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange</atitle><jtitle>Control and Cybernetics</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>50</volume><issue>3</issue><spage>383</spage><epage>399</epage><pages>383-399</pages><issn>2720-4278</issn><issn>0324-8569</issn><eissn>2720-4278</eissn><abstract>The paper presents selected elements of a modelling methodology involving quantization, quantum calculations and dequantization on the example of the neural model of the Day-Ahead Market of the Polish Electricity Exchange. Based on the fundamental assumptions of quantum computing, a new method has been proposed here of converting the real numbers in decimal notation into quantum mixed numbers using the probability modules of quantum mixed number and the principle of superposition, along with a new method of quantum calculations using linear algebra and vectormatrix calculus, and the Artificial Neural Network was taught accordingly. Dequantization of quantum mixed numbers to real numbers in decimal notation using the new method of dequantization has been proposed as well. The operation of the methods introduced was shown on numerical examples.</abstract><pub>Sciendo</pub><doi>10.2478/candc-2021-0023</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2720-4278
ispartof Control and Cybernetics, 2021-07, Vol.50 (3), p.383-399
issn 2720-4278
0324-8569
2720-4278
language eng
recordid cdi_gale_infotracmisc_A736973134
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algebra
artificial neural networks
day-ahead market
dequantization with ANN
Methods
neural modeling
Neural networks
Polish Electricity Exchange
quantum computing
quantum-inspired method
system quantization
title Quantum-inspired method of neural modeling of the day-ahead market of the Polish electricity exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum-inspired%20method%20of%20neural%20modeling%20of%20the%20day-ahead%20market%20of%20the%20Polish%20electricity%20exchange&rft.jtitle=Control%20and%20Cybernetics&rft.au=Tchorzewsk,%20Jerzy&rft.date=2021-07-01&rft.volume=50&rft.issue=3&rft.spage=383&rft.epage=399&rft.pages=383-399&rft.issn=2720-4278&rft.eissn=2720-4278&rft_id=info:doi/10.2478/candc-2021-0023&rft_dat=%3Cgale_cross%3EA736973134%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A736973134&rfr_iscdi=true