ON SOLID CORES AND HULLS OF WEIGHTED BERGMAN SPACES [Formula omitted]
We consider weighted Bergman spaces [Formula omitted] on the unit disc as well as the corresponding spaces of entire functions, defined using non-atomic Borel measures with radial symmetry. By extending the techniques from the case of reflexive Bergman spaces, we characterize the solid core of [Form...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-09, Vol.266 (2), p.239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 239 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 266 |
creator | Bonet, José Lusky, Wolfgang Taskinen, Jari |
description | We consider weighted Bergman spaces [Formula omitted] on the unit disc as well as the corresponding spaces of entire functions, defined using non-atomic Borel measures with radial symmetry. By extending the techniques from the case of reflexive Bergman spaces, we characterize the solid core of [Formula omitted]. Also, as a consequence of a characterization of solid [Formula omitted]-spaces, we show that, in the case of entire functions, there indeed exist solid [Formula omitted]-spaces. The second part of the article is restricted to the case of the unit disc and it contains a characterization of the solid hull of [Formula omitted], when [Formula omitted] equals the weighted Lebesgue measure with the weight v. The results are based on the duality relation of the weighted [Formula omitted]- and [Formula omitted]-spaces, the validity of which requires the assumption that [Formula omitted] belongs to the class [Formula omitted], studied in a number of publications; moreover, v has to satisfy the condition (b), introduced by the authors. The exponentially decreasing weight [Formula omitted] provides an example satisfying both assumptions. |
doi_str_mv | 10.1007/s10958-022-05764-5 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A730701260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730701260</galeid><sourcerecordid>A730701260</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1390-18e0d206cbc03a22f64af44bbfb88a47b2195a171a186a371388425de6552daf3</originalsourceid><addsrcrecordid>eNptzM1Kw0AUBeBZKFirL-BqwJWLqXf-MtNlTJM2EBtpWlyIlEkyEyJJA00KPr4BXVgod3Hg8J2L0AOFGQVQzz2FudQEGCMglSeIvEITCooRzpW4Qbd9_wUj9DSfoDBd4yxN4gUO0k2YYX-9wKtdkmQ4jfB7GC9X23CBX8LN8tUf5ZsfjOgj6o7tqTG4a-thsOXnHbp2punt_V9O0S4Kt8GKJOkyDvyEVJTPgVBtoWTgFXkB3DDmPGGcEHnucq2NUDmjc2moooZqz3BFudaCydJ6UrLSOD5Fj79_K9PYfX1w3XA0RVv3xd5XHBRQ5sGoyAVV2YM9mqY7WFeP9ZmfXfDjlbati4uDp7PBaAb7PVTm1Pf7ONv8tz-uhnIi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON SOLID CORES AND HULLS OF WEIGHTED BERGMAN SPACES [Formula omitted]</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bonet, José ; Lusky, Wolfgang ; Taskinen, Jari</creator><creatorcontrib>Bonet, José ; Lusky, Wolfgang ; Taskinen, Jari</creatorcontrib><description>We consider weighted Bergman spaces [Formula omitted] on the unit disc as well as the corresponding spaces of entire functions, defined using non-atomic Borel measures with radial symmetry. By extending the techniques from the case of reflexive Bergman spaces, we characterize the solid core of [Formula omitted]. Also, as a consequence of a characterization of solid [Formula omitted]-spaces, we show that, in the case of entire functions, there indeed exist solid [Formula omitted]-spaces. The second part of the article is restricted to the case of the unit disc and it contains a characterization of the solid hull of [Formula omitted], when [Formula omitted] equals the weighted Lebesgue measure with the weight v. The results are based on the duality relation of the weighted [Formula omitted]- and [Formula omitted]-spaces, the validity of which requires the assumption that [Formula omitted] belongs to the class [Formula omitted], studied in a number of publications; moreover, v has to satisfy the condition (b), introduced by the authors. The exponentially decreasing weight [Formula omitted] provides an example satisfying both assumptions.</description><identifier>ISSN: 1072-3374</identifier><identifier>DOI: 10.1007/s10958-022-05764-5</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-09, Vol.266 (2), p.239</ispartof><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bonet, José</creatorcontrib><creatorcontrib>Lusky, Wolfgang</creatorcontrib><creatorcontrib>Taskinen, Jari</creatorcontrib><title>ON SOLID CORES AND HULLS OF WEIGHTED BERGMAN SPACES [Formula omitted]</title><title>Journal of mathematical sciences (New York, N.Y.)</title><description>We consider weighted Bergman spaces [Formula omitted] on the unit disc as well as the corresponding spaces of entire functions, defined using non-atomic Borel measures with radial symmetry. By extending the techniques from the case of reflexive Bergman spaces, we characterize the solid core of [Formula omitted]. Also, as a consequence of a characterization of solid [Formula omitted]-spaces, we show that, in the case of entire functions, there indeed exist solid [Formula omitted]-spaces. The second part of the article is restricted to the case of the unit disc and it contains a characterization of the solid hull of [Formula omitted], when [Formula omitted] equals the weighted Lebesgue measure with the weight v. The results are based on the duality relation of the weighted [Formula omitted]- and [Formula omitted]-spaces, the validity of which requires the assumption that [Formula omitted] belongs to the class [Formula omitted], studied in a number of publications; moreover, v has to satisfy the condition (b), introduced by the authors. The exponentially decreasing weight [Formula omitted] provides an example satisfying both assumptions.</description><issn>1072-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptzM1Kw0AUBeBZKFirL-BqwJWLqXf-MtNlTJM2EBtpWlyIlEkyEyJJA00KPr4BXVgod3Hg8J2L0AOFGQVQzz2FudQEGCMglSeIvEITCooRzpW4Qbd9_wUj9DSfoDBd4yxN4gUO0k2YYX-9wKtdkmQ4jfB7GC9X23CBX8LN8tUf5ZsfjOgj6o7tqTG4a-thsOXnHbp2punt_V9O0S4Kt8GKJOkyDvyEVJTPgVBtoWTgFXkB3DDmPGGcEHnucq2NUDmjc2moooZqz3BFudaCydJ6UrLSOD5Fj79_K9PYfX1w3XA0RVv3xd5XHBRQ5sGoyAVV2YM9mqY7WFeP9ZmfXfDjlbati4uDp7PBaAb7PVTm1Pf7ONv8tz-uhnIi</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bonet, José</creator><creator>Lusky, Wolfgang</creator><creator>Taskinen, Jari</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20220901</creationdate><title>ON SOLID CORES AND HULLS OF WEIGHTED BERGMAN SPACES [Formula omitted]</title><author>Bonet, José ; Lusky, Wolfgang ; Taskinen, Jari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1390-18e0d206cbc03a22f64af44bbfb88a47b2195a171a186a371388425de6552daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonet, José</creatorcontrib><creatorcontrib>Lusky, Wolfgang</creatorcontrib><creatorcontrib>Taskinen, Jari</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonet, José</au><au>Lusky, Wolfgang</au><au>Taskinen, Jari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON SOLID CORES AND HULLS OF WEIGHTED BERGMAN SPACES [Formula omitted]</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>266</volume><issue>2</issue><spage>239</spage><pages>239-</pages><issn>1072-3374</issn><abstract>We consider weighted Bergman spaces [Formula omitted] on the unit disc as well as the corresponding spaces of entire functions, defined using non-atomic Borel measures with radial symmetry. By extending the techniques from the case of reflexive Bergman spaces, we characterize the solid core of [Formula omitted]. Also, as a consequence of a characterization of solid [Formula omitted]-spaces, we show that, in the case of entire functions, there indeed exist solid [Formula omitted]-spaces. The second part of the article is restricted to the case of the unit disc and it contains a characterization of the solid hull of [Formula omitted], when [Formula omitted] equals the weighted Lebesgue measure with the weight v. The results are based on the duality relation of the weighted [Formula omitted]- and [Formula omitted]-spaces, the validity of which requires the assumption that [Formula omitted] belongs to the class [Formula omitted], studied in a number of publications; moreover, v has to satisfy the condition (b), introduced by the authors. The exponentially decreasing weight [Formula omitted] provides an example satisfying both assumptions.</abstract><pub>Springer</pub><doi>10.1007/s10958-022-05764-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2022-09, Vol.266 (2), p.239 |
issn | 1072-3374 |
language | eng |
recordid | cdi_gale_infotracmisc_A730701260 |
source | SpringerLink Journals - AutoHoldings |
title | ON SOLID CORES AND HULLS OF WEIGHTED BERGMAN SPACES [Formula omitted] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20SOLID%20CORES%20AND%20HULLS%20OF%20WEIGHTED%20BERGMAN%20SPACES%20%5BFormula%20omitted%5D&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Bonet,%20Jos%C3%A9&rft.date=2022-09-01&rft.volume=266&rft.issue=2&rft.spage=239&rft.pages=239-&rft.issn=1072-3374&rft_id=info:doi/10.1007/s10958-022-05764-5&rft_dat=%3Cgale%3EA730701260%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A730701260&rfr_iscdi=true |