INFLUENCE OF CONTINGENCY FACTORS ON THE DEVELOPMENT OF SMART CITIES IN BRAZIL/ INFLUENCIA DE FATORES CONTINGENCIAIS NO DESENVOL VIMENTO DE CIDADES INTELIGENTES NO BRASIL/ INFLUENCIA DE FACTORES CONTINGENCIALES EN EL DESARROLLO DE CIUDADES INTELIGENTES EN BRASIL
Objective of the study: To analyze the influence of contingency factors (environment, structure, organizational size and organizational culture) on the 100 best-ranked Brazilian municipalities in the 2020 Connected Smart Cities Ranking. Methodology/approach: Data were collected from: Atlas of Human...
Gespeichert in:
Veröffentlicht in: | International Journal of Innovation (São Paulo) 2022-09, Vol.10 (4), p.696 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 696 |
container_title | International Journal of Innovation (São Paulo) |
container_volume | 10 |
creator | Rabito, Danilo Henrique Fagnani Sanches, Simone Leticia Raimundini Carvalho, Luisa Margarida Cagica |
description | Objective of the study: To analyze the influence of contingency factors (environment, structure, organizational size and organizational culture) on the 100 best-ranked Brazilian municipalities in the 2020 Connected Smart Cities Ranking. Methodology/approach: Data were collected from: Atlas of Human Development in Brazil (AtlasBR); Federal Administration Council (CFA); Brazilian Accounting and Tax Information System for the Public Sector (SICONFI); Brazilian Institute of Geography and Statistics (IBGE), and Superior Electoral Court (TSE). The data refer to the year 2019. The statistical methods used were normality and homogeneity tests, correlation and multiple linear regression, with the aid of the IBM SPSS Statistics Version 2.0 software. Originality/relevance: It focuses on how contingency factors influence the implementation of smart cities, producing quantitative evidence from the dependent variable with the independent variables. Main results: Multiple linear regression showed that the selected variables explain 62.40% of what a smart city is. It evidences the positive and significant influence of the 'environment'; 'organizational structure' and 'size' contingency factors for cities with more than 50,000 inhabitants. Theoretical/methodological contributions: The results contribute to the gap in empirical studies dealing with the contingency factors that affect municipalities in the sense of them becoming smart cities, and in the understanding of how these factors are related. Social/management contributions: The implications reach the definition of factors that affect public policies, development of public governance practices and citizen engagement for the implementation of smart cities. Keywords: Smart Cities. Critical factors. Contingency Theory. Brazilian cities. Objetivo do estudo: Analisar a influencia de fatores contingenciais (ambiente, estrutura, porte organizacional e cultura organizacional) nos 100 municipios brasileiros com melhor desempenho no Ranking Connected Smart Cities 2020. Metodologia / Abordagem: Foram coletados dados do sistema Atlas do Desenvolvimento Humano no Brasil (AtlasBR); Conselho Federal de Administrado (CFA); Sistema de Informales Contabeis e Fiscais do Setor Publico Brasileiro (SICONFI); Instituto Brasileiro de Geografia e Estatistica (IBGE) e Tribunal Superior Eleitoral (TSE). Os dados sao referentes ao ano de 2019. Utilizou-se dos metodos estatisticos de teste de normalidade, homogeneidade, correlacao e regressao li |
doi_str_mv | 10.5585/iji.10i4.21914 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A727889991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727889991</galeid><sourcerecordid>A727889991</sourcerecordid><originalsourceid>FETCH-LOGICAL-g671-a87da4d4a13e4d06c8519d56149e08ccde38e9aea9c2cc23bcc38b8f0920ffa23</originalsourceid><addsrcrecordid>eNptzc9vwiAUB_BumcmM87ozyc4q0NbCkVVUEoSlRZPtYpBSU-OPZO7_z9C5zGSGA7zH931eFD0j2E9Tkg6aTdNHsEn6GFGU3EdtHCPSozRLH67ej1H3eNxACBHFOKakfdcSaiznXOUc6DHItTJCTUL5DsYsN7oogVbATDkY8QWX-m3GlTklyxkrDMiFEbwEQoHXgn0IOQC_nGBhIhiBCIE_VzBRAqXDZ8nVQkuwECfy1AjaiI3OnOFShLTh52ywy1t2_h-XoeYKcHlawIpCS3mh5zdsri72U9Sq7fbou5e7E5kxN_m0J_VE5Ez21sMM9SzJKptUiUWxTyo4dCRFtEqHKKEeEucqHxNPrbfUYedwvHIuJitSQ4phXVscd6KXH3Ztt37Z7OvD16d1u-bolizDGSGUUhRS_RupcCq_a9xh7-sm9K8GvgFtL4ol</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>INFLUENCE OF CONTINGENCY FACTORS ON THE DEVELOPMENT OF SMART CITIES IN BRAZIL/ INFLUENCIA DE FATORES CONTINGENCIAIS NO DESENVOL VIMENTO DE CIDADES INTELIGENTES NO BRASIL/ INFLUENCIA DE FACTORES CONTINGENCIALES EN EL DESARROLLO DE CIUDADES INTELIGENTES EN BRASIL</title><source>EZB Electronic Journals Library</source><creator>Rabito, Danilo Henrique Fagnani ; Sanches, Simone Leticia Raimundini ; Carvalho, Luisa Margarida Cagica</creator><creatorcontrib>Rabito, Danilo Henrique Fagnani ; Sanches, Simone Leticia Raimundini ; Carvalho, Luisa Margarida Cagica</creatorcontrib><description>Objective of the study: To analyze the influence of contingency factors (environment, structure, organizational size and organizational culture) on the 100 best-ranked Brazilian municipalities in the 2020 Connected Smart Cities Ranking. Methodology/approach: Data were collected from: Atlas of Human Development in Brazil (AtlasBR); Federal Administration Council (CFA); Brazilian Accounting and Tax Information System for the Public Sector (SICONFI); Brazilian Institute of Geography and Statistics (IBGE), and Superior Electoral Court (TSE). The data refer to the year 2019. The statistical methods used were normality and homogeneity tests, correlation and multiple linear regression, with the aid of the IBM SPSS Statistics Version 2.0 software. Originality/relevance: It focuses on how contingency factors influence the implementation of smart cities, producing quantitative evidence from the dependent variable with the independent variables. Main results: Multiple linear regression showed that the selected variables explain 62.40% of what a smart city is. It evidences the positive and significant influence of the 'environment'; 'organizational structure' and 'size' contingency factors for cities with more than 50,000 inhabitants. Theoretical/methodological contributions: The results contribute to the gap in empirical studies dealing with the contingency factors that affect municipalities in the sense of them becoming smart cities, and in the understanding of how these factors are related. Social/management contributions: The implications reach the definition of factors that affect public policies, development of public governance practices and citizen engagement for the implementation of smart cities. Keywords: Smart Cities. Critical factors. Contingency Theory. Brazilian cities. Objetivo do estudo: Analisar a influencia de fatores contingenciais (ambiente, estrutura, porte organizacional e cultura organizacional) nos 100 municipios brasileiros com melhor desempenho no Ranking Connected Smart Cities 2020. Metodologia / Abordagem: Foram coletados dados do sistema Atlas do Desenvolvimento Humano no Brasil (AtlasBR); Conselho Federal de Administrado (CFA); Sistema de Informales Contabeis e Fiscais do Setor Publico Brasileiro (SICONFI); Instituto Brasileiro de Geografia e Estatistica (IBGE) e Tribunal Superior Eleitoral (TSE). Os dados sao referentes ao ano de 2019. Utilizou-se dos metodos estatisticos de teste de normalidade, homogeneidade, correlacao e regressao linear multipla com a utilizado do software IBM SPSS Statistics Version 2.0. Originalidade / relevancia: Concentra-se na influencia dos fatores contingenciais na implementado de cidades inteligentes, produzindo prova quantitativa baseada na variavel dependente com as variaveis independentes. Principais resultados: A regressao linear multipla demonstrou que as variaveis selecionadas explicam 62,40% do que e uma cidade inteligente. Evidencia a influencia positiva e significativa dos fatores contingenciais ambiente, estrutura e porte organizacional para as cidades acima de 50.000 habitantes. Contribuicoes teoricas / metodologicas: Os resultados contribuem para a lacuna de estudos empiricos que tratam dos fatores contingenciais que afetam os municipios para se tornarem cidades inteligentes e no entendimento como esses fatores se relacionam. Contribuicoes Sociais / Gestao: As implicacoes alcanqam a definido dos fatores que afetam as politicas publicas, desenvolvimento de praticas de governanca publica e do engajamento dos cidadaos para a implementado de cidades inteligentes. Palavras-chave: Cidades Inteligentes. Fatores Criticos. Teoria da Contingencia. Cidades Brasileiras. Objetivo del estudio: Analizar la influencia de los factores contingenciales (ambiente, estructura, tamano de la organizacion y cultura organizacional) en los 100 municipios brasilenos con el mejor desempeno en el Ranking Connected Smart Cities 2020. Metodologia/Abordaje: Se recogieron datos del sistema Atlas de Desarrollo Humano en Brasil (AtlasBR); Consejo Federal de Administracion (CFA); Sistema de Informaciones Contables y Fiscales del Sector Publico Brasileno (SICONFI); Instituto Brasileno de Geografia y Estadistica (IBGE) y Tribunal Superior Electoral (TSE). Los datos se refieren al ano 2019. Se utilizo los metodos estadisticos de prueba de normalidad, homogeneidad, correlacion y regresion lineal multiple con la utilizacion del software IBM SPSS Statistics Version 2.0. Originalidad/relevancia: Se concentra en la influencia de los factores contingenciales en la implementacion de ciudades inteligentes, produciendo prueba cuantitativa basada en la variable dependiente con las variables independientes. Principales resultados: La regresion lineal multiple demostro que las variables seleccionadas explican el 62,40% de lo que es una ciudad inteligente. Evidencia la influencia positiva y significativa de los factores contingenciales ambiente, estructura y tamano de la organizacion para las ciudades de mas de 50.000 habitantes. Contribuciones teoricas/metodologicas: Los resultados contribuyen a la falta de estudios empiricos que traten de los factores contingenciales que afectan a los municipios para convertirse en ciudades inteligentes y en la comprension de como esos factores se relacionan. Contribuciones sociales/Gestion: Las implicaciones alcanzan la definicion de los factores que afectan las politicas publicas, el desarrollo de practicas de gobernanza publica y la interaccion de los ciudadanos para la implementacion de ciudades inteligentes. Palabras-clave: Ciudades Inteligentes. Factores Criticos. Teoria de la Contingencia. Ciudades Brasilenas.</description><identifier>ISSN: 2318-9975</identifier><identifier>EISSN: 2318-9975</identifier><identifier>DOI: 10.5585/iji.10i4.21914</identifier><language>eng</language><publisher>Universidade Nove de Julho</publisher><subject>Electronic government ; Management research ; Municipal government ; Public administration ; Technology and state ; Technology transfer</subject><ispartof>International Journal of Innovation (São Paulo), 2022-09, Vol.10 (4), p.696</ispartof><rights>COPYRIGHT 2022 Universidade Nove de Julho</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Rabito, Danilo Henrique Fagnani</creatorcontrib><creatorcontrib>Sanches, Simone Leticia Raimundini</creatorcontrib><creatorcontrib>Carvalho, Luisa Margarida Cagica</creatorcontrib><title>INFLUENCE OF CONTINGENCY FACTORS ON THE DEVELOPMENT OF SMART CITIES IN BRAZIL/ INFLUENCIA DE FATORES CONTINGENCIAIS NO DESENVOL VIMENTO DE CIDADES INTELIGENTES NO BRASIL/ INFLUENCIA DE FACTORES CONTINGENCIALES EN EL DESARROLLO DE CIUDADES INTELIGENTES EN BRASIL</title><title>International Journal of Innovation (São Paulo)</title><description>Objective of the study: To analyze the influence of contingency factors (environment, structure, organizational size and organizational culture) on the 100 best-ranked Brazilian municipalities in the 2020 Connected Smart Cities Ranking. Methodology/approach: Data were collected from: Atlas of Human Development in Brazil (AtlasBR); Federal Administration Council (CFA); Brazilian Accounting and Tax Information System for the Public Sector (SICONFI); Brazilian Institute of Geography and Statistics (IBGE), and Superior Electoral Court (TSE). The data refer to the year 2019. The statistical methods used were normality and homogeneity tests, correlation and multiple linear regression, with the aid of the IBM SPSS Statistics Version 2.0 software. Originality/relevance: It focuses on how contingency factors influence the implementation of smart cities, producing quantitative evidence from the dependent variable with the independent variables. Main results: Multiple linear regression showed that the selected variables explain 62.40% of what a smart city is. It evidences the positive and significant influence of the 'environment'; 'organizational structure' and 'size' contingency factors for cities with more than 50,000 inhabitants. Theoretical/methodological contributions: The results contribute to the gap in empirical studies dealing with the contingency factors that affect municipalities in the sense of them becoming smart cities, and in the understanding of how these factors are related. Social/management contributions: The implications reach the definition of factors that affect public policies, development of public governance practices and citizen engagement for the implementation of smart cities. Keywords: Smart Cities. Critical factors. Contingency Theory. Brazilian cities. Objetivo do estudo: Analisar a influencia de fatores contingenciais (ambiente, estrutura, porte organizacional e cultura organizacional) nos 100 municipios brasileiros com melhor desempenho no Ranking Connected Smart Cities 2020. Metodologia / Abordagem: Foram coletados dados do sistema Atlas do Desenvolvimento Humano no Brasil (AtlasBR); Conselho Federal de Administrado (CFA); Sistema de Informales Contabeis e Fiscais do Setor Publico Brasileiro (SICONFI); Instituto Brasileiro de Geografia e Estatistica (IBGE) e Tribunal Superior Eleitoral (TSE). Os dados sao referentes ao ano de 2019. Utilizou-se dos metodos estatisticos de teste de normalidade, homogeneidade, correlacao e regressao linear multipla com a utilizado do software IBM SPSS Statistics Version 2.0. Originalidade / relevancia: Concentra-se na influencia dos fatores contingenciais na implementado de cidades inteligentes, produzindo prova quantitativa baseada na variavel dependente com as variaveis independentes. Principais resultados: A regressao linear multipla demonstrou que as variaveis selecionadas explicam 62,40% do que e uma cidade inteligente. Evidencia a influencia positiva e significativa dos fatores contingenciais ambiente, estrutura e porte organizacional para as cidades acima de 50.000 habitantes. Contribuicoes teoricas / metodologicas: Os resultados contribuem para a lacuna de estudos empiricos que tratam dos fatores contingenciais que afetam os municipios para se tornarem cidades inteligentes e no entendimento como esses fatores se relacionam. Contribuicoes Sociais / Gestao: As implicacoes alcanqam a definido dos fatores que afetam as politicas publicas, desenvolvimento de praticas de governanca publica e do engajamento dos cidadaos para a implementado de cidades inteligentes. Palavras-chave: Cidades Inteligentes. Fatores Criticos. Teoria da Contingencia. Cidades Brasileiras. Objetivo del estudio: Analizar la influencia de los factores contingenciales (ambiente, estructura, tamano de la organizacion y cultura organizacional) en los 100 municipios brasilenos con el mejor desempeno en el Ranking Connected Smart Cities 2020. Metodologia/Abordaje: Se recogieron datos del sistema Atlas de Desarrollo Humano en Brasil (AtlasBR); Consejo Federal de Administracion (CFA); Sistema de Informaciones Contables y Fiscales del Sector Publico Brasileno (SICONFI); Instituto Brasileno de Geografia y Estadistica (IBGE) y Tribunal Superior Electoral (TSE). Los datos se refieren al ano 2019. Se utilizo los metodos estadisticos de prueba de normalidad, homogeneidad, correlacion y regresion lineal multiple con la utilizacion del software IBM SPSS Statistics Version 2.0. Originalidad/relevancia: Se concentra en la influencia de los factores contingenciales en la implementacion de ciudades inteligentes, produciendo prueba cuantitativa basada en la variable dependiente con las variables independientes. Principales resultados: La regresion lineal multiple demostro que las variables seleccionadas explican el 62,40% de lo que es una ciudad inteligente. Evidencia la influencia positiva y significativa de los factores contingenciales ambiente, estructura y tamano de la organizacion para las ciudades de mas de 50.000 habitantes. Contribuciones teoricas/metodologicas: Los resultados contribuyen a la falta de estudios empiricos que traten de los factores contingenciales que afectan a los municipios para convertirse en ciudades inteligentes y en la comprension de como esos factores se relacionan. Contribuciones sociales/Gestion: Las implicaciones alcanzan la definicion de los factores que afectan las politicas publicas, el desarrollo de practicas de gobernanza publica y la interaccion de los ciudadanos para la implementacion de ciudades inteligentes. Palabras-clave: Ciudades Inteligentes. Factores Criticos. Teoria de la Contingencia. Ciudades Brasilenas.</description><subject>Electronic government</subject><subject>Management research</subject><subject>Municipal government</subject><subject>Public administration</subject><subject>Technology and state</subject><subject>Technology transfer</subject><issn>2318-9975</issn><issn>2318-9975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptzc9vwiAUB_BumcmM87ozyc4q0NbCkVVUEoSlRZPtYpBSU-OPZO7_z9C5zGSGA7zH931eFD0j2E9Tkg6aTdNHsEn6GFGU3EdtHCPSozRLH67ej1H3eNxACBHFOKakfdcSaiznXOUc6DHItTJCTUL5DsYsN7oogVbATDkY8QWX-m3GlTklyxkrDMiFEbwEQoHXgn0IOQC_nGBhIhiBCIE_VzBRAqXDZ8nVQkuwECfy1AjaiI3OnOFShLTh52ywy1t2_h-XoeYKcHlawIpCS3mh5zdsri72U9Sq7fbou5e7E5kxN_m0J_VE5Ez21sMM9SzJKptUiUWxTyo4dCRFtEqHKKEeEucqHxNPrbfUYedwvHIuJitSQ4phXVscd6KXH3Ztt37Z7OvD16d1u-bolizDGSGUUhRS_RupcCq_a9xh7-sm9K8GvgFtL4ol</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Rabito, Danilo Henrique Fagnani</creator><creator>Sanches, Simone Leticia Raimundini</creator><creator>Carvalho, Luisa Margarida Cagica</creator><general>Universidade Nove de Julho</general><scope>INF</scope></search><sort><creationdate>20220901</creationdate><title>INFLUENCE OF CONTINGENCY FACTORS ON THE DEVELOPMENT OF SMART CITIES IN BRAZIL/ INFLUENCIA DE FATORES CONTINGENCIAIS NO DESENVOL VIMENTO DE CIDADES INTELIGENTES NO BRASIL/ INFLUENCIA DE FACTORES CONTINGENCIALES EN EL DESARROLLO DE CIUDADES INTELIGENTES EN BRASIL</title><author>Rabito, Danilo Henrique Fagnani ; Sanches, Simone Leticia Raimundini ; Carvalho, Luisa Margarida Cagica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g671-a87da4d4a13e4d06c8519d56149e08ccde38e9aea9c2cc23bcc38b8f0920ffa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electronic government</topic><topic>Management research</topic><topic>Municipal government</topic><topic>Public administration</topic><topic>Technology and state</topic><topic>Technology transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabito, Danilo Henrique Fagnani</creatorcontrib><creatorcontrib>Sanches, Simone Leticia Raimundini</creatorcontrib><creatorcontrib>Carvalho, Luisa Margarida Cagica</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>International Journal of Innovation (São Paulo)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabito, Danilo Henrique Fagnani</au><au>Sanches, Simone Leticia Raimundini</au><au>Carvalho, Luisa Margarida Cagica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INFLUENCE OF CONTINGENCY FACTORS ON THE DEVELOPMENT OF SMART CITIES IN BRAZIL/ INFLUENCIA DE FATORES CONTINGENCIAIS NO DESENVOL VIMENTO DE CIDADES INTELIGENTES NO BRASIL/ INFLUENCIA DE FACTORES CONTINGENCIALES EN EL DESARROLLO DE CIUDADES INTELIGENTES EN BRASIL</atitle><jtitle>International Journal of Innovation (São Paulo)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>696</spage><pages>696-</pages><issn>2318-9975</issn><eissn>2318-9975</eissn><abstract>Objective of the study: To analyze the influence of contingency factors (environment, structure, organizational size and organizational culture) on the 100 best-ranked Brazilian municipalities in the 2020 Connected Smart Cities Ranking. Methodology/approach: Data were collected from: Atlas of Human Development in Brazil (AtlasBR); Federal Administration Council (CFA); Brazilian Accounting and Tax Information System for the Public Sector (SICONFI); Brazilian Institute of Geography and Statistics (IBGE), and Superior Electoral Court (TSE). The data refer to the year 2019. The statistical methods used were normality and homogeneity tests, correlation and multiple linear regression, with the aid of the IBM SPSS Statistics Version 2.0 software. Originality/relevance: It focuses on how contingency factors influence the implementation of smart cities, producing quantitative evidence from the dependent variable with the independent variables. Main results: Multiple linear regression showed that the selected variables explain 62.40% of what a smart city is. It evidences the positive and significant influence of the 'environment'; 'organizational structure' and 'size' contingency factors for cities with more than 50,000 inhabitants. Theoretical/methodological contributions: The results contribute to the gap in empirical studies dealing with the contingency factors that affect municipalities in the sense of them becoming smart cities, and in the understanding of how these factors are related. Social/management contributions: The implications reach the definition of factors that affect public policies, development of public governance practices and citizen engagement for the implementation of smart cities. Keywords: Smart Cities. Critical factors. Contingency Theory. Brazilian cities. Objetivo do estudo: Analisar a influencia de fatores contingenciais (ambiente, estrutura, porte organizacional e cultura organizacional) nos 100 municipios brasileiros com melhor desempenho no Ranking Connected Smart Cities 2020. Metodologia / Abordagem: Foram coletados dados do sistema Atlas do Desenvolvimento Humano no Brasil (AtlasBR); Conselho Federal de Administrado (CFA); Sistema de Informales Contabeis e Fiscais do Setor Publico Brasileiro (SICONFI); Instituto Brasileiro de Geografia e Estatistica (IBGE) e Tribunal Superior Eleitoral (TSE). Os dados sao referentes ao ano de 2019. Utilizou-se dos metodos estatisticos de teste de normalidade, homogeneidade, correlacao e regressao linear multipla com a utilizado do software IBM SPSS Statistics Version 2.0. Originalidade / relevancia: Concentra-se na influencia dos fatores contingenciais na implementado de cidades inteligentes, produzindo prova quantitativa baseada na variavel dependente com as variaveis independentes. Principais resultados: A regressao linear multipla demonstrou que as variaveis selecionadas explicam 62,40% do que e uma cidade inteligente. Evidencia a influencia positiva e significativa dos fatores contingenciais ambiente, estrutura e porte organizacional para as cidades acima de 50.000 habitantes. Contribuicoes teoricas / metodologicas: Os resultados contribuem para a lacuna de estudos empiricos que tratam dos fatores contingenciais que afetam os municipios para se tornarem cidades inteligentes e no entendimento como esses fatores se relacionam. Contribuicoes Sociais / Gestao: As implicacoes alcanqam a definido dos fatores que afetam as politicas publicas, desenvolvimento de praticas de governanca publica e do engajamento dos cidadaos para a implementado de cidades inteligentes. Palavras-chave: Cidades Inteligentes. Fatores Criticos. Teoria da Contingencia. Cidades Brasileiras. Objetivo del estudio: Analizar la influencia de los factores contingenciales (ambiente, estructura, tamano de la organizacion y cultura organizacional) en los 100 municipios brasilenos con el mejor desempeno en el Ranking Connected Smart Cities 2020. Metodologia/Abordaje: Se recogieron datos del sistema Atlas de Desarrollo Humano en Brasil (AtlasBR); Consejo Federal de Administracion (CFA); Sistema de Informaciones Contables y Fiscales del Sector Publico Brasileno (SICONFI); Instituto Brasileno de Geografia y Estadistica (IBGE) y Tribunal Superior Electoral (TSE). Los datos se refieren al ano 2019. Se utilizo los metodos estadisticos de prueba de normalidad, homogeneidad, correlacion y regresion lineal multiple con la utilizacion del software IBM SPSS Statistics Version 2.0. Originalidad/relevancia: Se concentra en la influencia de los factores contingenciales en la implementacion de ciudades inteligentes, produciendo prueba cuantitativa basada en la variable dependiente con las variables independientes. Principales resultados: La regresion lineal multiple demostro que las variables seleccionadas explican el 62,40% de lo que es una ciudad inteligente. Evidencia la influencia positiva y significativa de los factores contingenciales ambiente, estructura y tamano de la organizacion para las ciudades de mas de 50.000 habitantes. Contribuciones teoricas/metodologicas: Los resultados contribuyen a la falta de estudios empiricos que traten de los factores contingenciales que afectan a los municipios para convertirse en ciudades inteligentes y en la comprension de como esos factores se relacionan. Contribuciones sociales/Gestion: Las implicaciones alcanzan la definicion de los factores que afectan las politicas publicas, el desarrollo de practicas de gobernanza publica y la interaccion de los ciudadanos para la implementacion de ciudades inteligentes. Palabras-clave: Ciudades Inteligentes. Factores Criticos. Teoria de la Contingencia. Ciudades Brasilenas.</abstract><pub>Universidade Nove de Julho</pub><doi>10.5585/iji.10i4.21914</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2318-9975 |
ispartof | International Journal of Innovation (São Paulo), 2022-09, Vol.10 (4), p.696 |
issn | 2318-9975 2318-9975 |
language | eng |
recordid | cdi_gale_infotracmisc_A727889991 |
source | EZB Electronic Journals Library |
subjects | Electronic government Management research Municipal government Public administration Technology and state Technology transfer |
title | INFLUENCE OF CONTINGENCY FACTORS ON THE DEVELOPMENT OF SMART CITIES IN BRAZIL/ INFLUENCIA DE FATORES CONTINGENCIAIS NO DESENVOL VIMENTO DE CIDADES INTELIGENTES NO BRASIL/ INFLUENCIA DE FACTORES CONTINGENCIALES EN EL DESARROLLO DE CIUDADES INTELIGENTES EN BRASIL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T20%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INFLUENCE%20OF%20CONTINGENCY%20FACTORS%20ON%20THE%20DEVELOPMENT%20OF%20SMART%20CITIES%20IN%20BRAZIL/%20INFLUENCIA%20DE%20FATORES%20CONTINGENCIAIS%20NO%20DESENVOL%20VIMENTO%20DE%20CIDADES%20INTELIGENTES%20NO%20BRASIL/%20INFLUENCIA%20DE%20FACTORES%20CONTINGENCIALES%20EN%20EL%20DESARROLLO%20DE%20CIUDADES%20INTELIGENTES%20EN%20BRASIL&rft.jtitle=International%20Journal%20of%20Innovation%20(S%C3%A3o%20Paulo)&rft.au=Rabito,%20Danilo%20Henrique%20Fagnani&rft.date=2022-09-01&rft.volume=10&rft.issue=4&rft.spage=696&rft.pages=696-&rft.issn=2318-9975&rft.eissn=2318-9975&rft_id=info:doi/10.5585/iji.10i4.21914&rft_dat=%3Cgale%3EA727889991%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A727889991&rfr_iscdi=true |