Hybrid algorithm for the detection of Pixel-based digital image forgery using Markov and SIFT descriptors/Algoritmo hibrido mediante descriptores Markov y SIFT para la detection de la falsification de imagenes

Today, image forgery is common due to the massification of low-cost/high-resolution digital cameras, along with the accessibility of computer programs for image processing. All media is affected by this issue, which makes the public doubt the news. Though image modification is a typical process in e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Facultad de Ingeniería 2022-10 (105), p.111
Hauptverfasser: Cortes-Osorio, Jimmy Alexander, Chaves-Osorio, Jose Andres, Ldpez-Robayo, Cristian David
Format: Artikel
Sprache:spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 105
container_start_page 111
container_title Revista Facultad de Ingeniería
container_volume
creator Cortes-Osorio, Jimmy Alexander
Chaves-Osorio, Jose Andres
Ldpez-Robayo, Cristian David
description Today, image forgery is common due to the massification of low-cost/high-resolution digital cameras, along with the accessibility of computer programs for image processing. All media is affected by this issue, which makes the public doubt the news. Though image modification is a typical process in entertainment, when images are taken as evidence in a legal process, modification cannot be considered trivial. Digital forensics has the challenge of ensuring the accuracy and integrity of digital images to overcome this issue. This investigation introduces an algorithm to detect the main types of pixel-based alterations such as copy-move forgery, resampling, and splicing in digital images. For the evaluation of the algorithm, CVLAB, CASIA V1, Columbia, and Columbia Uncompressed datasets were used. Of 7100 images evaluated, 3666 were unaltered, 791 had resampling, 2213 had splicing, and 430 had copy-move forgeries. The algorithm detected all proposed forgery pixel methods with an accuracy of 91%. The main novelties of the proposal are the reduced number of features needed for identification and its robustness for the file format and image size.
doi_str_mv 10.17533/udea.redin.20211165
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A711928091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711928091</galeid><sourcerecordid>A711928091</sourcerecordid><originalsourceid>FETCH-gale_infotracmisc_A7119280913</originalsourceid><addsrcrecordid>eNqNjk1Lw0AQhvegYP34Bx4GPCfdTUiaHotY6kEQ7L1Ms5PNaLJbdrdifqb_yMZa6NHTMDMP7_sIca9kqmZFnk_3mjD1pNmmmcyUUmVxISZSZTIps1xeiesQ3qUsqlJWE_G9GraeNWBnnOfY9tA4D7El0BSpjuwsuAZe-Yu6ZIuBNGg2HLED7tHQiBvyA-wDWwMv6D_cJ6DV8Pa8XB9CQu15F50P08WxonfQ8tjpoD9Yoo10hlE4ZQzHhB16hA7PdDSNe4Nd4IZrPN1-dSyFW3E5_ujub96Ih-XT-nGVGOxow7Zx0WPdc6g3i5lS86ySc5X_j_oBzhl05w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid algorithm for the detection of Pixel-based digital image forgery using Markov and SIFT descriptors/Algoritmo hibrido mediante descriptores Markov y SIFT para la detection de la falsification de imagenes</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Cortes-Osorio, Jimmy Alexander ; Chaves-Osorio, Jose Andres ; Ldpez-Robayo, Cristian David</creator><creatorcontrib>Cortes-Osorio, Jimmy Alexander ; Chaves-Osorio, Jose Andres ; Ldpez-Robayo, Cristian David</creatorcontrib><description>Today, image forgery is common due to the massification of low-cost/high-resolution digital cameras, along with the accessibility of computer programs for image processing. All media is affected by this issue, which makes the public doubt the news. Though image modification is a typical process in entertainment, when images are taken as evidence in a legal process, modification cannot be considered trivial. Digital forensics has the challenge of ensuring the accuracy and integrity of digital images to overcome this issue. This investigation introduces an algorithm to detect the main types of pixel-based alterations such as copy-move forgery, resampling, and splicing in digital images. For the evaluation of the algorithm, CVLAB, CASIA V1, Columbia, and Columbia Uncompressed datasets were used. Of 7100 images evaluated, 3666 were unaltered, 791 had resampling, 2213 had splicing, and 430 had copy-move forgeries. The algorithm detected all proposed forgery pixel methods with an accuracy of 91%. The main novelties of the proposal are the reduced number of features needed for identification and its robustness for the file format and image size.</description><identifier>ISSN: 0120-6230</identifier><identifier>DOI: 10.17533/udea.redin.20211165</identifier><language>spa</language><publisher>Universidad de Antioquia, Facultad de Ingenieria</publisher><subject>Algorithms ; Computer forensics ; Electronic cameras ; Equipment and supplies ; Evidence (Law) ; Forgery ; Image processing</subject><ispartof>Revista Facultad de Ingeniería, 2022-10 (105), p.111</ispartof><rights>COPYRIGHT 2022 Universidad de Antioquia, Facultad de Ingenieria</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Cortes-Osorio, Jimmy Alexander</creatorcontrib><creatorcontrib>Chaves-Osorio, Jose Andres</creatorcontrib><creatorcontrib>Ldpez-Robayo, Cristian David</creatorcontrib><title>Hybrid algorithm for the detection of Pixel-based digital image forgery using Markov and SIFT descriptors/Algoritmo hibrido mediante descriptores Markov y SIFT para la detection de la falsification de imagenes</title><title>Revista Facultad de Ingeniería</title><description>Today, image forgery is common due to the massification of low-cost/high-resolution digital cameras, along with the accessibility of computer programs for image processing. All media is affected by this issue, which makes the public doubt the news. Though image modification is a typical process in entertainment, when images are taken as evidence in a legal process, modification cannot be considered trivial. Digital forensics has the challenge of ensuring the accuracy and integrity of digital images to overcome this issue. This investigation introduces an algorithm to detect the main types of pixel-based alterations such as copy-move forgery, resampling, and splicing in digital images. For the evaluation of the algorithm, CVLAB, CASIA V1, Columbia, and Columbia Uncompressed datasets were used. Of 7100 images evaluated, 3666 were unaltered, 791 had resampling, 2213 had splicing, and 430 had copy-move forgeries. The algorithm detected all proposed forgery pixel methods with an accuracy of 91%. The main novelties of the proposal are the reduced number of features needed for identification and its robustness for the file format and image size.</description><subject>Algorithms</subject><subject>Computer forensics</subject><subject>Electronic cameras</subject><subject>Equipment and supplies</subject><subject>Evidence (Law)</subject><subject>Forgery</subject><subject>Image processing</subject><issn>0120-6230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNjk1Lw0AQhvegYP34Bx4GPCfdTUiaHotY6kEQ7L1Ms5PNaLJbdrdifqb_yMZa6NHTMDMP7_sIca9kqmZFnk_3mjD1pNmmmcyUUmVxISZSZTIps1xeiesQ3qUsqlJWE_G9GraeNWBnnOfY9tA4D7El0BSpjuwsuAZe-Yu6ZIuBNGg2HLED7tHQiBvyA-wDWwMv6D_cJ6DV8Pa8XB9CQu15F50P08WxonfQ8tjpoD9Yoo10hlE4ZQzHhB16hA7PdDSNe4Nd4IZrPN1-dSyFW3E5_ujub96Ih-XT-nGVGOxow7Zx0WPdc6g3i5lS86ySc5X_j_oBzhl05w</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Cortes-Osorio, Jimmy Alexander</creator><creator>Chaves-Osorio, Jose Andres</creator><creator>Ldpez-Robayo, Cristian David</creator><general>Universidad de Antioquia, Facultad de Ingenieria</general><scope>INF</scope></search><sort><creationdate>20221001</creationdate><title>Hybrid algorithm for the detection of Pixel-based digital image forgery using Markov and SIFT descriptors/Algoritmo hibrido mediante descriptores Markov y SIFT para la detection de la falsification de imagenes</title><author>Cortes-Osorio, Jimmy Alexander ; Chaves-Osorio, Jose Andres ; Ldpez-Robayo, Cristian David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracmisc_A7119280913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>spa</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Computer forensics</topic><topic>Electronic cameras</topic><topic>Equipment and supplies</topic><topic>Evidence (Law)</topic><topic>Forgery</topic><topic>Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cortes-Osorio, Jimmy Alexander</creatorcontrib><creatorcontrib>Chaves-Osorio, Jose Andres</creatorcontrib><creatorcontrib>Ldpez-Robayo, Cristian David</creatorcontrib><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista Facultad de Ingeniería</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cortes-Osorio, Jimmy Alexander</au><au>Chaves-Osorio, Jose Andres</au><au>Ldpez-Robayo, Cristian David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid algorithm for the detection of Pixel-based digital image forgery using Markov and SIFT descriptors/Algoritmo hibrido mediante descriptores Markov y SIFT para la detection de la falsification de imagenes</atitle><jtitle>Revista Facultad de Ingeniería</jtitle><date>2022-10-01</date><risdate>2022</risdate><issue>105</issue><spage>111</spage><pages>111-</pages><issn>0120-6230</issn><abstract>Today, image forgery is common due to the massification of low-cost/high-resolution digital cameras, along with the accessibility of computer programs for image processing. All media is affected by this issue, which makes the public doubt the news. Though image modification is a typical process in entertainment, when images are taken as evidence in a legal process, modification cannot be considered trivial. Digital forensics has the challenge of ensuring the accuracy and integrity of digital images to overcome this issue. This investigation introduces an algorithm to detect the main types of pixel-based alterations such as copy-move forgery, resampling, and splicing in digital images. For the evaluation of the algorithm, CVLAB, CASIA V1, Columbia, and Columbia Uncompressed datasets were used. Of 7100 images evaluated, 3666 were unaltered, 791 had resampling, 2213 had splicing, and 430 had copy-move forgeries. The algorithm detected all proposed forgery pixel methods with an accuracy of 91%. The main novelties of the proposal are the reduced number of features needed for identification and its robustness for the file format and image size.</abstract><pub>Universidad de Antioquia, Facultad de Ingenieria</pub><doi>10.17533/udea.redin.20211165</doi></addata></record>
fulltext fulltext
identifier ISSN: 0120-6230
ispartof Revista Facultad de Ingeniería, 2022-10 (105), p.111
issn 0120-6230
language spa
recordid cdi_gale_infotracmisc_A711928091
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computer forensics
Electronic cameras
Equipment and supplies
Evidence (Law)
Forgery
Image processing
title Hybrid algorithm for the detection of Pixel-based digital image forgery using Markov and SIFT descriptors/Algoritmo hibrido mediante descriptores Markov y SIFT para la detection de la falsification de imagenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20algorithm%20for%20the%20detection%20of%20Pixel-based%20digital%20image%20forgery%20using%20Markov%20and%20SIFT%20descriptors/Algoritmo%20hibrido%20mediante%20descriptores%20Markov%20y%20SIFT%20para%20la%20detection%20de%20la%20falsification%20de%20imagenes&rft.jtitle=Revista%20Facultad%20de%20Ingenier%C3%ADa&rft.au=Cortes-Osorio,%20Jimmy%20Alexander&rft.date=2022-10-01&rft.issue=105&rft.spage=111&rft.pages=111-&rft.issn=0120-6230&rft_id=info:doi/10.17533/udea.redin.20211165&rft_dat=%3Cgale%3EA711928091%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A711928091&rfr_iscdi=true