Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis

Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2022-07, Vol.17 (7)
Hauptverfasser: Lu, Hezhi, Cai, Fengjing, Li, Yuan, Ou, Xionghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title PloS one
container_volume 17
creator Lu, Hezhi
Cai, Fengjing
Li, Yuan
Ou, Xionghui
description Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods.
doi_str_mv 10.1371/journal.pone.0272007
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A711135073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711135073</galeid><sourcerecordid>A711135073</sourcerecordid><originalsourceid>FETCH-LOGICAL-g251t-286947f249caf1400f4323b11e5d0b95103ea869113ec9d9982faf9ad3756dc93</originalsourceid><addsrcrecordid>eNqNkUtLAzEQgBdRsFb_gYeAIHjYNY_ubuOtFB8FoeDrWqbZSZua3S1JVtp_b4oeWvAgw2SG4fvmkEmSS0YzJkp2u2o714DN1m2DGeUlp7Q8SnpMCp4WnIrjvf40OfN-RWkuhkXRS8JIqc5BQGKagO4LLEEfTA3BtA3RrSNhicQZ_0kqozU6bNSOJdDEV7X12mKUVesc2rimIpxsYgaYW7wjY7CamLruGhO20QG79cafJycarMeL39pP3h_u38ZP6fP0cTIePacLnrOQ8mEhB6XmA6lAswGleiC4mDOGeUXnMmdUIESGMYFKVlIOuQYtoRJlXlRKin5y9bN3ARZnptFtcKBq49VsVLKo5bQUkcr-oGJUWBsVv1SbOD8Qbg6EyATchAV03s8mry__Z6cfh-z1HrtEsGHpW9vtTuH3wW_XY5gb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Hezhi ; Cai, Fengjing ; Li, Yuan ; Ou, Xionghui</creator><creatorcontrib>Lu, Hezhi ; Cai, Fengjing ; Li, Yuan ; Ou, Xionghui</creatorcontrib><description>Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0272007</identifier><language>eng</language><publisher>Public Library of Science</publisher><subject>Biometry ; Confidence intervals ; Estimation theory ; Mathematical research ; Methods</subject><ispartof>PloS one, 2022-07, Vol.17 (7)</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Lu, Hezhi</creatorcontrib><creatorcontrib>Cai, Fengjing</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Ou, Xionghui</creatorcontrib><title>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</title><title>PloS one</title><description>Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods.</description><subject>Biometry</subject><subject>Confidence intervals</subject><subject>Estimation theory</subject><subject>Mathematical research</subject><subject>Methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEQgBdRsFb_gYeAIHjYNY_ubuOtFB8FoeDrWqbZSZua3S1JVtp_b4oeWvAgw2SG4fvmkEmSS0YzJkp2u2o714DN1m2DGeUlp7Q8SnpMCp4WnIrjvf40OfN-RWkuhkXRS8JIqc5BQGKagO4LLEEfTA3BtA3RrSNhicQZ_0kqozU6bNSOJdDEV7X12mKUVesc2rimIpxsYgaYW7wjY7CamLruGhO20QG79cafJycarMeL39pP3h_u38ZP6fP0cTIePacLnrOQ8mEhB6XmA6lAswGleiC4mDOGeUXnMmdUIESGMYFKVlIOuQYtoRJlXlRKin5y9bN3ARZnptFtcKBq49VsVLKo5bQUkcr-oGJUWBsVv1SbOD8Qbg6EyATchAV03s8mry__Z6cfh-z1HrtEsGHpW9vtTuH3wW_XY5gb</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Lu, Hezhi</creator><creator>Cai, Fengjing</creator><creator>Li, Yuan</creator><creator>Ou, Xionghui</creator><general>Public Library of Science</general><scope>IOV</scope><scope>ISR</scope></search><sort><creationdate>20220722</creationdate><title>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</title><author>Lu, Hezhi ; Cai, Fengjing ; Li, Yuan ; Ou, Xionghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g251t-286947f249caf1400f4323b11e5d0b95103ea869113ec9d9982faf9ad3756dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biometry</topic><topic>Confidence intervals</topic><topic>Estimation theory</topic><topic>Mathematical research</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hezhi</creatorcontrib><creatorcontrib>Cai, Fengjing</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Ou, Xionghui</creatorcontrib><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hezhi</au><au>Cai, Fengjing</au><au>Li, Yuan</au><au>Ou, Xionghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</atitle><jtitle>PloS one</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>17</volume><issue>7</issue><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods.</abstract><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0272007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2022-07, Vol.17 (7)
issn 1932-6203
1932-6203
language eng
recordid cdi_gale_infotracmisc_A711135073
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biometry
Confidence intervals
Estimation theory
Mathematical research
Methods
title Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20interval%20estimation%20for%20the%20risk%20difference%20in%20an%20incomplete%20correlated%202%20x%202%20table:%20Calf%20immunity%20analysis&rft.jtitle=PloS%20one&rft.au=Lu,%20Hezhi&rft.date=2022-07-22&rft.volume=17&rft.issue=7&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0272007&rft_dat=%3Cgale%3EA711135073%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A711135073&rfr_iscdi=true