Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis
Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing meth...
Gespeichert in:
Veröffentlicht in: | PloS one 2022-07, Vol.17 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | PloS one |
container_volume | 17 |
creator | Lu, Hezhi Cai, Fengjing Li, Yuan Ou, Xionghui |
description | Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods. |
doi_str_mv | 10.1371/journal.pone.0272007 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracmisc_A711135073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711135073</galeid><sourcerecordid>A711135073</sourcerecordid><originalsourceid>FETCH-LOGICAL-g251t-286947f249caf1400f4323b11e5d0b95103ea869113ec9d9982faf9ad3756dc93</originalsourceid><addsrcrecordid>eNqNkUtLAzEQgBdRsFb_gYeAIHjYNY_ubuOtFB8FoeDrWqbZSZua3S1JVtp_b4oeWvAgw2SG4fvmkEmSS0YzJkp2u2o714DN1m2DGeUlp7Q8SnpMCp4WnIrjvf40OfN-RWkuhkXRS8JIqc5BQGKagO4LLEEfTA3BtA3RrSNhicQZ_0kqozU6bNSOJdDEV7X12mKUVesc2rimIpxsYgaYW7wjY7CamLruGhO20QG79cafJycarMeL39pP3h_u38ZP6fP0cTIePacLnrOQ8mEhB6XmA6lAswGleiC4mDOGeUXnMmdUIESGMYFKVlIOuQYtoRJlXlRKin5y9bN3ARZnptFtcKBq49VsVLKo5bQUkcr-oGJUWBsVv1SbOD8Qbg6EyATchAV03s8mry__Z6cfh-z1HrtEsGHpW9vtTuH3wW_XY5gb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Hezhi ; Cai, Fengjing ; Li, Yuan ; Ou, Xionghui</creator><creatorcontrib>Lu, Hezhi ; Cai, Fengjing ; Li, Yuan ; Ou, Xionghui</creatorcontrib><description>Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0272007</identifier><language>eng</language><publisher>Public Library of Science</publisher><subject>Biometry ; Confidence intervals ; Estimation theory ; Mathematical research ; Methods</subject><ispartof>PloS one, 2022-07, Vol.17 (7)</ispartof><rights>COPYRIGHT 2022 Public Library of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Lu, Hezhi</creatorcontrib><creatorcontrib>Cai, Fengjing</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Ou, Xionghui</creatorcontrib><title>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</title><title>PloS one</title><description>Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods.</description><subject>Biometry</subject><subject>Confidence intervals</subject><subject>Estimation theory</subject><subject>Mathematical research</subject><subject>Methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEQgBdRsFb_gYeAIHjYNY_ubuOtFB8FoeDrWqbZSZua3S1JVtp_b4oeWvAgw2SG4fvmkEmSS0YzJkp2u2o714DN1m2DGeUlp7Q8SnpMCp4WnIrjvf40OfN-RWkuhkXRS8JIqc5BQGKagO4LLEEfTA3BtA3RrSNhicQZ_0kqozU6bNSOJdDEV7X12mKUVesc2rimIpxsYgaYW7wjY7CamLruGhO20QG79cafJycarMeL39pP3h_u38ZP6fP0cTIePacLnrOQ8mEhB6XmA6lAswGleiC4mDOGeUXnMmdUIESGMYFKVlIOuQYtoRJlXlRKin5y9bN3ARZnptFtcKBq49VsVLKo5bQUkcr-oGJUWBsVv1SbOD8Qbg6EyATchAV03s8mry__Z6cfh-z1HrtEsGHpW9vtTuH3wW_XY5gb</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Lu, Hezhi</creator><creator>Cai, Fengjing</creator><creator>Li, Yuan</creator><creator>Ou, Xionghui</creator><general>Public Library of Science</general><scope>IOV</scope><scope>ISR</scope></search><sort><creationdate>20220722</creationdate><title>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</title><author>Lu, Hezhi ; Cai, Fengjing ; Li, Yuan ; Ou, Xionghui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g251t-286947f249caf1400f4323b11e5d0b95103ea869113ec9d9982faf9ad3756dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biometry</topic><topic>Confidence intervals</topic><topic>Estimation theory</topic><topic>Mathematical research</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hezhi</creatorcontrib><creatorcontrib>Cai, Fengjing</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Ou, Xionghui</creatorcontrib><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hezhi</au><au>Cai, Fengjing</au><au>Li, Yuan</au><au>Ou, Xionghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis</atitle><jtitle>PloS one</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>17</volume><issue>7</issue><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Interval estimation with accurate coverage for risk difference (RD) in a correlated 2 x 2 table with structural zero is a fundamental and important problem in biostatistics. The score test-based and Bayesian tail-based confidence intervals (CIs) have good coverage performance among the existing methods. However, as approximation approaches, they have coverage probabilities lower than the nominal confidence level for finite and moderate sample sizes. In this paper, we propose three new CIs for RD based on the fiducial, inferential model (IM) and modified IM (MIM) methods. The IM interval is proven to be valid. Moreover, simulation studies show that the CIs of fiducial and MIM methods can guarantee the preset coverage rate even for small sample sizes. More importantly, in terms of coverage probability and expected length, the MIM interval outperforms other intervals. Finally, a real example illustrates the application of the proposed methods.</abstract><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0272007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2022-07, Vol.17 (7) |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_gale_infotracmisc_A711135073 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biometry Confidence intervals Estimation theory Mathematical research Methods |
title | Accurate interval estimation for the risk difference in an incomplete correlated 2 x 2 table: Calf immunity analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20interval%20estimation%20for%20the%20risk%20difference%20in%20an%20incomplete%20correlated%202%20x%202%20table:%20Calf%20immunity%20analysis&rft.jtitle=PloS%20one&rft.au=Lu,%20Hezhi&rft.date=2022-07-22&rft.volume=17&rft.issue=7&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0272007&rft_dat=%3Cgale%3EA711135073%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A711135073&rfr_iscdi=true |