A toolbox for brain network construction and classification (BrainNetClass)

Brain functional network has been increasingly used in understanding brain functions and diseases. While many network construction methods have been proposed, the progress in the field still largely relies on static pairwise Pearson's correlation‐based functional network and group‐level compari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human brain mapping 2020-07, Vol.41 (10), p.2808-2826
Hauptverfasser: Zhou, Zhen, Chen, Xiaobo, Zhang, Yu, Hu, Dan, Qiao, Lishan, Yu, Renping, Yap, Pew‐Thian, Pan, Gang, Zhang, Han, Shen, Dinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2826
container_issue 10
container_start_page 2808
container_title Human brain mapping
container_volume 41
creator Zhou, Zhen
Chen, Xiaobo
Zhang, Yu
Hu, Dan
Qiao, Lishan
Yu, Renping
Yap, Pew‐Thian
Pan, Gang
Zhang, Han
Shen, Dinggang
description Brain functional network has been increasingly used in understanding brain functions and diseases. While many network construction methods have been proposed, the progress in the field still largely relies on static pairwise Pearson's correlation‐based functional network and group‐level comparisons. We introduce a “Brain Network Construction and Classification (BrainNetClass)” toolbox to promote more advanced brain network construction methods to the filed, including some state‐of‐the‐art methods that were recently developed to capture complex and high‐order interactions among brain regions. The toolbox also integrates a well‐accepted and rigorous classification framework based on brain connectome features toward individualized disease diagnosis in a hope that the advanced network modeling could boost the subsequent classification. BrainNetClass is a MATLAB‐based, open‐source, cross‐platform toolbox with both graphical user‐friendly interfaces and a command line mode targeting cognitive neuroscientists and clinicians for promoting reliability, reproducibility, and interpretability of connectome‐based, computer‐aided diagnosis. It generates abundant classification‐related results from network presentations to contributing features that have been largely ignored by most studies to grant users the ability of evaluating the disease diagnostic model and its robustness and generalizability. We demonstrate the effectiveness of the toolbox on real resting‐state functional MRI datasets. BrainNetClass (v1.0) is available at https://github.com/zzstefan/BrainNetClass.
doi_str_mv 10.1002/hbm.24979
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracmisc_A710595152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710595152</galeid><sourcerecordid>A710595152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5109-737d97339fd7a04792b6b3c831dda48bd972dc2dc83adcb0afc3320f1bb5abe43</originalsourceid><addsrcrecordid>eNqNkl1vFCEUhidGY2v1wj9gJvGmjZnt4WOG5cZkO6nWWPVGrwkw0FJnoMKMbf-9zO66WqOJgQRyeM7LObwUxXMECwSAjy_VsMCUM_6g2EfAWQWIk4fzvqkrThnaK56kdAWAUA3ocbFHMGoIxmi_eL8qxxB6FW5LG2KponS-9Ga8CfFrqYNPY5z06IIvpe9K3cuUnHVarkOHJzP-0YztHD96Wjyysk_m2XY9KL68Of3cnlXnn96-a1fnla5zdRUjrOOMEG47JoEyjlWjiF4S1HWSLlU-xJ3Oc0lkpxVIqwnBYJFStVSGkoPi9Ub3elKD6bTxY5S9uI5ukPFOBOnE_RPvLsVF-C4Y5hQYZIHDrUAM3yaTRjG4pE3fS2_ClAQmrGGEIooy-vIP9CpM0ef2BKYIs4YyAr-oC9kb4bwN-V49i4oVQ1DzGtU4U4u_UHl0ZnD5rY11OX4v4WiToGNIKRq76xGBmJ0X2Xmxdj6zL35_lB350-oMLDfAjVHBJu2M12aHAUCNOOaQZfM_ad24trgNkx9z6qv_T8308ZbO7dz9u2RxdvJhU_sPwg7Xfg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412764730</pqid></control><display><type>article</type><title>A toolbox for brain network construction and classification (BrainNetClass)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Zhou, Zhen ; Chen, Xiaobo ; Zhang, Yu ; Hu, Dan ; Qiao, Lishan ; Yu, Renping ; Yap, Pew‐Thian ; Pan, Gang ; Zhang, Han ; Shen, Dinggang</creator><creatorcontrib>Zhou, Zhen ; Chen, Xiaobo ; Zhang, Yu ; Hu, Dan ; Qiao, Lishan ; Yu, Renping ; Yap, Pew‐Thian ; Pan, Gang ; Zhang, Han ; Shen, Dinggang</creatorcontrib><description>Brain functional network has been increasingly used in understanding brain functions and diseases. While many network construction methods have been proposed, the progress in the field still largely relies on static pairwise Pearson's correlation‐based functional network and group‐level comparisons. We introduce a “Brain Network Construction and Classification (BrainNetClass)” toolbox to promote more advanced brain network construction methods to the filed, including some state‐of‐the‐art methods that were recently developed to capture complex and high‐order interactions among brain regions. The toolbox also integrates a well‐accepted and rigorous classification framework based on brain connectome features toward individualized disease diagnosis in a hope that the advanced network modeling could boost the subsequent classification. BrainNetClass is a MATLAB‐based, open‐source, cross‐platform toolbox with both graphical user‐friendly interfaces and a command line mode targeting cognitive neuroscientists and clinicians for promoting reliability, reproducibility, and interpretability of connectome‐based, computer‐aided diagnosis. It generates abundant classification‐related results from network presentations to contributing features that have been largely ignored by most studies to grant users the ability of evaluating the disease diagnostic model and its robustness and generalizability. We demonstrate the effectiveness of the toolbox on real resting‐state functional MRI datasets. BrainNetClass (v1.0) is available at https://github.com/zzstefan/BrainNetClass.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.24979</identifier><identifier>PMID: 32163221</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Brain ; Brain - diagnostic imaging ; Brain - physiology ; brain connectome ; Brain research ; Classification ; Cognitive ability ; Connectome - methods ; Construction methods ; Diagnosis ; Diagnostic systems ; dynamic functional connectivity ; functional connectivity ; Functional magnetic resonance imaging ; Functionals ; Graphical user interface ; Humans ; Image Processing, Computer-Assisted - methods ; Interfaces ; Life Sciences &amp; Biomedicine ; machine learning ; Magnetic Resonance Imaging - methods ; Nerve Net - diagnostic imaging ; Nerve Net - physiology ; Neuroimaging ; Neurosciences ; Neurosciences &amp; Neurology ; prediction ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Science &amp; Technology ; Software ; sparse representation ; toolbox</subject><ispartof>Human brain mapping, 2020-07, Vol.41 (10), p.2808-2826</ispartof><rights>2020 The Authors. published by Wiley Periodicals, Inc.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>51</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000519290100001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5109-737d97339fd7a04792b6b3c831dda48bd972dc2dc83adcb0afc3320f1bb5abe43</citedby><cites>FETCH-LOGICAL-c5109-737d97339fd7a04792b6b3c831dda48bd972dc2dc83adcb0afc3320f1bb5abe43</cites><orcidid>0000-0002-6645-8810 ; 0000-0001-9940-1637 ; 0000-0002-9169-5885 ; 0000-0002-7934-5698 ; 0000-0003-4087-6544 ; 0000-0002-4049-6181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294070/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294070/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2115,11567,27929,27930,28253,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32163221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhen</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Qiao, Lishan</creatorcontrib><creatorcontrib>Yu, Renping</creatorcontrib><creatorcontrib>Yap, Pew‐Thian</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><title>A toolbox for brain network construction and classification (BrainNetClass)</title><title>Human brain mapping</title><addtitle>HUM BRAIN MAPP</addtitle><addtitle>Hum Brain Mapp</addtitle><description>Brain functional network has been increasingly used in understanding brain functions and diseases. While many network construction methods have been proposed, the progress in the field still largely relies on static pairwise Pearson's correlation‐based functional network and group‐level comparisons. We introduce a “Brain Network Construction and Classification (BrainNetClass)” toolbox to promote more advanced brain network construction methods to the filed, including some state‐of‐the‐art methods that were recently developed to capture complex and high‐order interactions among brain regions. The toolbox also integrates a well‐accepted and rigorous classification framework based on brain connectome features toward individualized disease diagnosis in a hope that the advanced network modeling could boost the subsequent classification. BrainNetClass is a MATLAB‐based, open‐source, cross‐platform toolbox with both graphical user‐friendly interfaces and a command line mode targeting cognitive neuroscientists and clinicians for promoting reliability, reproducibility, and interpretability of connectome‐based, computer‐aided diagnosis. It generates abundant classification‐related results from network presentations to contributing features that have been largely ignored by most studies to grant users the ability of evaluating the disease diagnostic model and its robustness and generalizability. We demonstrate the effectiveness of the toolbox on real resting‐state functional MRI datasets. BrainNetClass (v1.0) is available at https://github.com/zzstefan/BrainNetClass.</description><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>brain connectome</subject><subject>Brain research</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Connectome - methods</subject><subject>Construction methods</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>dynamic functional connectivity</subject><subject>functional connectivity</subject><subject>Functional magnetic resonance imaging</subject><subject>Functionals</subject><subject>Graphical user interface</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Interfaces</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>machine learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - physiology</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>prediction</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Science &amp; Technology</subject><subject>Software</subject><subject>sparse representation</subject><subject>toolbox</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkl1vFCEUhidGY2v1wj9gJvGmjZnt4WOG5cZkO6nWWPVGrwkw0FJnoMKMbf-9zO66WqOJgQRyeM7LObwUxXMECwSAjy_VsMCUM_6g2EfAWQWIk4fzvqkrThnaK56kdAWAUA3ocbFHMGoIxmi_eL8qxxB6FW5LG2KponS-9Ga8CfFrqYNPY5z06IIvpe9K3cuUnHVarkOHJzP-0YztHD96Wjyysk_m2XY9KL68Of3cnlXnn96-a1fnla5zdRUjrOOMEG47JoEyjlWjiF4S1HWSLlU-xJ3Oc0lkpxVIqwnBYJFStVSGkoPi9Ub3elKD6bTxY5S9uI5ukPFOBOnE_RPvLsVF-C4Y5hQYZIHDrUAM3yaTRjG4pE3fS2_ClAQmrGGEIooy-vIP9CpM0ef2BKYIs4YyAr-oC9kb4bwN-V49i4oVQ1DzGtU4U4u_UHl0ZnD5rY11OX4v4WiToGNIKRq76xGBmJ0X2Xmxdj6zL35_lB350-oMLDfAjVHBJu2M12aHAUCNOOaQZfM_ad24trgNkx9z6qv_T8308ZbO7dz9u2RxdvJhU_sPwg7Xfg</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Zhou, Zhen</creator><creator>Chen, Xiaobo</creator><creator>Zhang, Yu</creator><creator>Hu, Dan</creator><creator>Qiao, Lishan</creator><creator>Yu, Renping</creator><creator>Yap, Pew‐Thian</creator><creator>Pan, Gang</creator><creator>Zhang, Han</creator><creator>Shen, Dinggang</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6645-8810</orcidid><orcidid>https://orcid.org/0000-0001-9940-1637</orcidid><orcidid>https://orcid.org/0000-0002-9169-5885</orcidid><orcidid>https://orcid.org/0000-0002-7934-5698</orcidid><orcidid>https://orcid.org/0000-0003-4087-6544</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid></search><sort><creationdate>202007</creationdate><title>A toolbox for brain network construction and classification (BrainNetClass)</title><author>Zhou, Zhen ; Chen, Xiaobo ; Zhang, Yu ; Hu, Dan ; Qiao, Lishan ; Yu, Renping ; Yap, Pew‐Thian ; Pan, Gang ; Zhang, Han ; Shen, Dinggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5109-737d97339fd7a04792b6b3c831dda48bd972dc2dc83adcb0afc3320f1bb5abe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>brain connectome</topic><topic>Brain research</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Connectome - methods</topic><topic>Construction methods</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>dynamic functional connectivity</topic><topic>functional connectivity</topic><topic>Functional magnetic resonance imaging</topic><topic>Functionals</topic><topic>Graphical user interface</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Interfaces</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>machine learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - physiology</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>prediction</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Science &amp; Technology</topic><topic>Software</topic><topic>sparse representation</topic><topic>toolbox</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhen</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Hu, Dan</creatorcontrib><creatorcontrib>Qiao, Lishan</creatorcontrib><creatorcontrib>Yu, Renping</creatorcontrib><creatorcontrib>Yap, Pew‐Thian</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Shen, Dinggang</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhen</au><au>Chen, Xiaobo</au><au>Zhang, Yu</au><au>Hu, Dan</au><au>Qiao, Lishan</au><au>Yu, Renping</au><au>Yap, Pew‐Thian</au><au>Pan, Gang</au><au>Zhang, Han</au><au>Shen, Dinggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A toolbox for brain network construction and classification (BrainNetClass)</atitle><jtitle>Human brain mapping</jtitle><stitle>HUM BRAIN MAPP</stitle><addtitle>Hum Brain Mapp</addtitle><date>2020-07</date><risdate>2020</risdate><volume>41</volume><issue>10</issue><spage>2808</spage><epage>2826</epage><pages>2808-2826</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Brain functional network has been increasingly used in understanding brain functions and diseases. While many network construction methods have been proposed, the progress in the field still largely relies on static pairwise Pearson's correlation‐based functional network and group‐level comparisons. We introduce a “Brain Network Construction and Classification (BrainNetClass)” toolbox to promote more advanced brain network construction methods to the filed, including some state‐of‐the‐art methods that were recently developed to capture complex and high‐order interactions among brain regions. The toolbox also integrates a well‐accepted and rigorous classification framework based on brain connectome features toward individualized disease diagnosis in a hope that the advanced network modeling could boost the subsequent classification. BrainNetClass is a MATLAB‐based, open‐source, cross‐platform toolbox with both graphical user‐friendly interfaces and a command line mode targeting cognitive neuroscientists and clinicians for promoting reliability, reproducibility, and interpretability of connectome‐based, computer‐aided diagnosis. It generates abundant classification‐related results from network presentations to contributing features that have been largely ignored by most studies to grant users the ability of evaluating the disease diagnostic model and its robustness and generalizability. We demonstrate the effectiveness of the toolbox on real resting‐state functional MRI datasets. BrainNetClass (v1.0) is available at https://github.com/zzstefan/BrainNetClass.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32163221</pmid><doi>10.1002/hbm.24979</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6645-8810</orcidid><orcidid>https://orcid.org/0000-0001-9940-1637</orcidid><orcidid>https://orcid.org/0000-0002-9169-5885</orcidid><orcidid>https://orcid.org/0000-0002-7934-5698</orcidid><orcidid>https://orcid.org/0000-0003-4087-6544</orcidid><orcidid>https://orcid.org/0000-0002-4049-6181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2020-07, Vol.41 (10), p.2808-2826
issn 1065-9471
1097-0193
language eng
recordid cdi_gale_infotracmisc_A710595152
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects Brain
Brain - diagnostic imaging
Brain - physiology
brain connectome
Brain research
Classification
Cognitive ability
Connectome - methods
Construction methods
Diagnosis
Diagnostic systems
dynamic functional connectivity
functional connectivity
Functional magnetic resonance imaging
Functionals
Graphical user interface
Humans
Image Processing, Computer-Assisted - methods
Interfaces
Life Sciences & Biomedicine
machine learning
Magnetic Resonance Imaging - methods
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neuroimaging
Neurosciences
Neurosciences & Neurology
prediction
Radiology, Nuclear Medicine & Medical Imaging
Science & Technology
Software
sparse representation
toolbox
title A toolbox for brain network construction and classification (BrainNetClass)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20toolbox%20for%20brain%20network%20construction%20and%20classification%20(BrainNetClass)&rft.jtitle=Human%20brain%20mapping&rft.au=Zhou,%20Zhen&rft.date=2020-07&rft.volume=41&rft.issue=10&rft.spage=2808&rft.epage=2826&rft.pages=2808-2826&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.24979&rft_dat=%3Cgale_webof%3EA710595152%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412764730&rft_id=info:pmid/32163221&rft_galeid=A710595152&rfr_iscdi=true