Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma

Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO molecular medicine 2020-01, Vol.12 (1), p.e10924-n/a, Article 10924
Hauptverfasser: Han, Mingzhi, Wang, Shuai, Yang, Ning, Wang, Xu, Zhao, Wenbo, Saed, Halala Sdik, Daubon, Thomas, Huang, Bin, Chen, Anjing, Li, Gang, Miletic, Hrvoje, Thorsen, Frits, Bjerkvig, Rolf, Li, Xingang, Wang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e10924
container_title EMBO molecular medicine
container_volume 12
creator Han, Mingzhi
Wang, Shuai
Yang, Ning
Wang, Xu
Zhao, Wenbo
Saed, Halala Sdik
Daubon, Thomas
Huang, Bin
Chen, Anjing
Li, Gang
Miletic, Hrvoje
Thorsen, Frits
Bjerkvig, Rolf
Li, Xingang
Wang, Jian
description Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth in vivo . Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target. Synopsis Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis. Loss of CYP46A1 promotes malignant behavior of GBM. CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol. Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration. Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis. Graphical Abstract Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.
doi_str_mv 10.15252/emmm.201910924
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracmisc_A710569969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710569969</galeid><doaj_id>oai_doaj_org_article_9027dbabbdc145e0a2567a88a9cc744f</doaj_id><sourcerecordid>A710569969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEoqVw5oYicQGhbW3H8QcHpNWq0Eqt4FAOnCzbmey6SuJtnBTtf890d9l2KxAoh4wmv_fsN5kse03JMS1ZyU6gbdtjRqimRDP-JDukspQTLhR_uqulOMhepHRNiCgFVc-zg4JKKRlhh1l7tYDeLmEcgs9Du2yCt0OIXcpjndtmgB6q3C9iAwnr2OSL2EJMg00h5S1UwQ4IuFXexLTWzH5842JK89Dli7G1XT5vQnSNTUNs7cvsWW2bBK-276Ps--fTq9nZ5OLrl_PZ9GLihSJ8UjFaCABfCUVrXamaa-6ElSXnkjklhHNKV7xiWltOBQcHglmnNVRWFYwUR9n5xreK9tos-9DafmWiDWbdiP3c2B4TN2A0YbJy1rnKU14CsawU0ipltfeS8xq9Pm28lqPDwB66obfNnun-ly4szDzeGqG5LilDg_cbg8Uj2dn0wtz1SMHLQqviliL7bntYH29GnLlpQ_LQNLaDOCbDCoquoqQK0beP0Os49h2OFSl0VEQWxT01txg2dHXEO_o7UzOVlJRCa6GROv4DhU8FbfCxgzpgf09wshH4Hv97D_UuGCVmvZnmbjPNbjNR8ebhGHf871VEQG2An-BinXyAzsMOI4SUCCnOsCJ0Fob1ms7i2A0o_fD_UqQ_bmkMtfrXxc3p5eXlwxhkI06o6-bQ30_9b8l_ATh8H4E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334580733</pqid></control><display><type>article</type><title>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Han, Mingzhi ; Wang, Shuai ; Yang, Ning ; Wang, Xu ; Zhao, Wenbo ; Saed, Halala Sdik ; Daubon, Thomas ; Huang, Bin ; Chen, Anjing ; Li, Gang ; Miletic, Hrvoje ; Thorsen, Frits ; Bjerkvig, Rolf ; Li, Xingang ; Wang, Jian</creator><creatorcontrib>Han, Mingzhi ; Wang, Shuai ; Yang, Ning ; Wang, Xu ; Zhao, Wenbo ; Saed, Halala Sdik ; Daubon, Thomas ; Huang, Bin ; Chen, Anjing ; Li, Gang ; Miletic, Hrvoje ; Thorsen, Frits ; Bjerkvig, Rolf ; Li, Xingang ; Wang, Jian</creatorcontrib><description>Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth in vivo . Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target. Synopsis Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis. Loss of CYP46A1 promotes malignant behavior of GBM. CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol. Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration. Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis. Graphical Abstract Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.</description><identifier>ISSN: 1757-4676</identifier><identifier>EISSN: 1757-4684</identifier><identifier>DOI: 10.15252/emmm.201910924</identifier><identifier>PMID: 31777202</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>24OHC ; Antiretroviral drugs ; Bile ; Blood-brain barrier ; Brain - metabolism ; Brain cancer ; Cancer ; Cell growth ; Cell proliferation ; Cholesterol ; Cholesterol - metabolism ; Cholesterol 24-Hydroxylase - genetics ; Cholesterol 24-Hydroxylase - metabolism ; cholesterol homeostasis ; CYP46A1 ; Cytochrome P-450 ; Datasets ; Development and progression ; Ectopic expression ; Efavirenz ; EMBO03 ; EMBO08 ; EMBO27 ; Gene expression ; Genes ; Genomes ; Glioblastoma ; Glioblastoma - metabolism ; Glioblastoma multiforme ; Health aspects ; Homeostasis ; Humans ; Hydroxylase ; Life Sciences ; Life Sciences &amp; Biomedicine ; Lipid metabolism ; Lipoproteins ; Medical prognosis ; Medicine, Research &amp; Experimental ; Metabolism ; Physiological aspects ; Prognosis ; Proteins ; Research &amp; Experimental Medicine ; Ribonucleic acid ; RNA ; Science &amp; Technology ; Sterol regulatory element-binding protein ; Therapeutic applications ; Transcription factors ; Tumors</subject><ispartof>EMBO molecular medicine, 2020-01, Vol.12 (1), p.e10924-n/a, Article 10924</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>50</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000502384200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</citedby><cites>FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</cites><orcidid>0000-0002-9482-5227 ; 0000-0002-0454-5281 ; 0000-0002-9622-7263 ; 0000-0002-0878-0211 ; 0000-0002-7762-3703 ; 0000-0001-8357-5974 ; 0000-0002-0319-7617 ; 0000-0002-5824-4134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949512/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949512/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,2115,11567,27929,27930,28253,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31777202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03453983$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Mingzhi</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Saed, Halala Sdik</creatorcontrib><creatorcontrib>Daubon, Thomas</creatorcontrib><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Chen, Anjing</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Li, Xingang</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><title>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</title><title>EMBO molecular medicine</title><addtitle>EMBO Mol Med</addtitle><addtitle>EMBO MOL MED</addtitle><addtitle>EMBO Mol Med</addtitle><description>Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth in vivo . Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target. Synopsis Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis. Loss of CYP46A1 promotes malignant behavior of GBM. CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol. Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration. Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis. Graphical Abstract Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.</description><subject>24OHC</subject><subject>Antiretroviral drugs</subject><subject>Bile</subject><subject>Blood-brain barrier</subject><subject>Brain - metabolism</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterol 24-Hydroxylase - genetics</subject><subject>Cholesterol 24-Hydroxylase - metabolism</subject><subject>cholesterol homeostasis</subject><subject>CYP46A1</subject><subject>Cytochrome P-450</subject><subject>Datasets</subject><subject>Development and progression</subject><subject>Ectopic expression</subject><subject>Efavirenz</subject><subject>EMBO03</subject><subject>EMBO08</subject><subject>EMBO27</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma multiforme</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lipid metabolism</subject><subject>Lipoproteins</subject><subject>Medical prognosis</subject><subject>Medicine, Research &amp; Experimental</subject><subject>Metabolism</subject><subject>Physiological aspects</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Research &amp; Experimental Medicine</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science &amp; Technology</subject><subject>Sterol regulatory element-binding protein</subject><subject>Therapeutic applications</subject><subject>Transcription factors</subject><subject>Tumors</subject><issn>1757-4676</issn><issn>1757-4684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1v1DAQxSMEoqVw5oYicQGhbW3H8QcHpNWq0Eqt4FAOnCzbmey6SuJtnBTtf890d9l2KxAoh4wmv_fsN5kse03JMS1ZyU6gbdtjRqimRDP-JDukspQTLhR_uqulOMhepHRNiCgFVc-zg4JKKRlhh1l7tYDeLmEcgs9Du2yCt0OIXcpjndtmgB6q3C9iAwnr2OSL2EJMg00h5S1UwQ4IuFXexLTWzH5842JK89Dli7G1XT5vQnSNTUNs7cvsWW2bBK-276Ps--fTq9nZ5OLrl_PZ9GLihSJ8UjFaCABfCUVrXamaa-6ElSXnkjklhHNKV7xiWltOBQcHglmnNVRWFYwUR9n5xreK9tos-9DafmWiDWbdiP3c2B4TN2A0YbJy1rnKU14CsawU0ipltfeS8xq9Pm28lqPDwB66obfNnun-ly4szDzeGqG5LilDg_cbg8Uj2dn0wtz1SMHLQqviliL7bntYH29GnLlpQ_LQNLaDOCbDCoquoqQK0beP0Os49h2OFSl0VEQWxT01txg2dHXEO_o7UzOVlJRCa6GROv4DhU8FbfCxgzpgf09wshH4Hv97D_UuGCVmvZnmbjPNbjNR8ebhGHf871VEQG2An-BinXyAzsMOI4SUCCnOsCJ0Fob1ms7i2A0o_fD_UqQ_bmkMtfrXxc3p5eXlwxhkI06o6-bQ30_9b8l_ATh8H4E</recordid><startdate>20200109</startdate><enddate>20200109</enddate><creator>Han, Mingzhi</creator><creator>Wang, Shuai</creator><creator>Yang, Ning</creator><creator>Wang, Xu</creator><creator>Zhao, Wenbo</creator><creator>Saed, Halala Sdik</creator><creator>Daubon, Thomas</creator><creator>Huang, Bin</creator><creator>Chen, Anjing</creator><creator>Li, Gang</creator><creator>Miletic, Hrvoje</creator><creator>Thorsen, Frits</creator><creator>Bjerkvig, Rolf</creator><creator>Li, Xingang</creator><creator>Wang, Jian</creator><general>Nature Publishing Group UK</general><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><general>EMBO Press</general><general>Wiley Open Access</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9482-5227</orcidid><orcidid>https://orcid.org/0000-0002-0454-5281</orcidid><orcidid>https://orcid.org/0000-0002-9622-7263</orcidid><orcidid>https://orcid.org/0000-0002-0878-0211</orcidid><orcidid>https://orcid.org/0000-0002-7762-3703</orcidid><orcidid>https://orcid.org/0000-0001-8357-5974</orcidid><orcidid>https://orcid.org/0000-0002-0319-7617</orcidid><orcidid>https://orcid.org/0000-0002-5824-4134</orcidid></search><sort><creationdate>20200109</creationdate><title>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</title><author>Han, Mingzhi ; Wang, Shuai ; Yang, Ning ; Wang, Xu ; Zhao, Wenbo ; Saed, Halala Sdik ; Daubon, Thomas ; Huang, Bin ; Chen, Anjing ; Li, Gang ; Miletic, Hrvoje ; Thorsen, Frits ; Bjerkvig, Rolf ; Li, Xingang ; Wang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>24OHC</topic><topic>Antiretroviral drugs</topic><topic>Bile</topic><topic>Blood-brain barrier</topic><topic>Brain - metabolism</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterol 24-Hydroxylase - genetics</topic><topic>Cholesterol 24-Hydroxylase - metabolism</topic><topic>cholesterol homeostasis</topic><topic>CYP46A1</topic><topic>Cytochrome P-450</topic><topic>Datasets</topic><topic>Development and progression</topic><topic>Ectopic expression</topic><topic>Efavirenz</topic><topic>EMBO03</topic><topic>EMBO08</topic><topic>EMBO27</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma multiforme</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lipid metabolism</topic><topic>Lipoproteins</topic><topic>Medical prognosis</topic><topic>Medicine, Research &amp; Experimental</topic><topic>Metabolism</topic><topic>Physiological aspects</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Research &amp; Experimental Medicine</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science &amp; Technology</topic><topic>Sterol regulatory element-binding protein</topic><topic>Therapeutic applications</topic><topic>Transcription factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Mingzhi</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Saed, Halala Sdik</creatorcontrib><creatorcontrib>Daubon, Thomas</creatorcontrib><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Chen, Anjing</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Li, Xingang</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EMBO molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Mingzhi</au><au>Wang, Shuai</au><au>Yang, Ning</au><au>Wang, Xu</au><au>Zhao, Wenbo</au><au>Saed, Halala Sdik</au><au>Daubon, Thomas</au><au>Huang, Bin</au><au>Chen, Anjing</au><au>Li, Gang</au><au>Miletic, Hrvoje</au><au>Thorsen, Frits</au><au>Bjerkvig, Rolf</au><au>Li, Xingang</au><au>Wang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</atitle><jtitle>EMBO molecular medicine</jtitle><stitle>EMBO Mol Med</stitle><stitle>EMBO MOL MED</stitle><addtitle>EMBO Mol Med</addtitle><date>2020-01-09</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>e10924</spage><epage>n/a</epage><pages>e10924-n/a</pages><artnum>10924</artnum><issn>1757-4676</issn><eissn>1757-4684</eissn><abstract>Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and in vivo tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth in vivo . Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target. Synopsis Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis. Loss of CYP46A1 promotes malignant behavior of GBM. CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol. Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration. Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis. Graphical Abstract Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31777202</pmid><doi>10.15252/emmm.201910924</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9482-5227</orcidid><orcidid>https://orcid.org/0000-0002-0454-5281</orcidid><orcidid>https://orcid.org/0000-0002-9622-7263</orcidid><orcidid>https://orcid.org/0000-0002-0878-0211</orcidid><orcidid>https://orcid.org/0000-0002-7762-3703</orcidid><orcidid>https://orcid.org/0000-0001-8357-5974</orcidid><orcidid>https://orcid.org/0000-0002-0319-7617</orcidid><orcidid>https://orcid.org/0000-0002-5824-4134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-4676
ispartof EMBO molecular medicine, 2020-01, Vol.12 (1), p.e10924-n/a, Article 10924
issn 1757-4676
1757-4684
language eng
recordid cdi_gale_infotracmisc_A710569969
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central
subjects 24OHC
Antiretroviral drugs
Bile
Blood-brain barrier
Brain - metabolism
Brain cancer
Cancer
Cell growth
Cell proliferation
Cholesterol
Cholesterol - metabolism
Cholesterol 24-Hydroxylase - genetics
Cholesterol 24-Hydroxylase - metabolism
cholesterol homeostasis
CYP46A1
Cytochrome P-450
Datasets
Development and progression
Ectopic expression
Efavirenz
EMBO03
EMBO08
EMBO27
Gene expression
Genes
Genomes
Glioblastoma
Glioblastoma - metabolism
Glioblastoma multiforme
Health aspects
Homeostasis
Humans
Hydroxylase
Life Sciences
Life Sciences & Biomedicine
Lipid metabolism
Lipoproteins
Medical prognosis
Medicine, Research & Experimental
Metabolism
Physiological aspects
Prognosis
Proteins
Research & Experimental Medicine
Ribonucleic acid
RNA
Science & Technology
Sterol regulatory element-binding protein
Therapeutic applications
Transcription factors
Tumors
title Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20implications%20of%20altered%20cholesterol%20homeostasis%20mediated%20by%20loss%20of%20CYP46A1%20in%20human%20glioblastoma&rft.jtitle=EMBO%20molecular%20medicine&rft.au=Han,%20Mingzhi&rft.date=2020-01-09&rft.volume=12&rft.issue=1&rft.spage=e10924&rft.epage=n/a&rft.pages=e10924-n/a&rft.artnum=10924&rft.issn=1757-4676&rft.eissn=1757-4684&rft_id=info:doi/10.15252/emmm.201910924&rft_dat=%3Cgale_webof%3EA710569969%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334580733&rft_id=info:pmid/31777202&rft_galeid=A710569969&rft_doaj_id=oai_doaj_org_article_9027dbabbdc145e0a2567a88a9cc744f&rfr_iscdi=true