Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma
Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the co...
Gespeichert in:
Veröffentlicht in: | EMBO molecular medicine 2020-01, Vol.12 (1), p.e10924-n/a, Article 10924 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e10924 |
container_title | EMBO molecular medicine |
container_volume | 12 |
creator | Han, Mingzhi Wang, Shuai Yang, Ning Wang, Xu Zhao, Wenbo Saed, Halala Sdik Daubon, Thomas Huang, Bin Chen, Anjing Li, Gang Miletic, Hrvoje Thorsen, Frits Bjerkvig, Rolf Li, Xingang Wang, Jian |
description | Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and
in vivo
tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth
in vivo
. Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.
Synopsis
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.
Loss of CYP46A1 promotes malignant behavior of GBM.
CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol.
Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration.
Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis.
Graphical Abstract
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis. |
doi_str_mv | 10.15252/emmm.201910924 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracmisc_A710569969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A710569969</galeid><doaj_id>oai_doaj_org_article_9027dbabbdc145e0a2567a88a9cc744f</doaj_id><sourcerecordid>A710569969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</originalsourceid><addsrcrecordid>eNqNks1v1DAQxSMEoqVw5oYicQGhbW3H8QcHpNWq0Eqt4FAOnCzbmey6SuJtnBTtf890d9l2KxAoh4wmv_fsN5kse03JMS1ZyU6gbdtjRqimRDP-JDukspQTLhR_uqulOMhepHRNiCgFVc-zg4JKKRlhh1l7tYDeLmEcgs9Du2yCt0OIXcpjndtmgB6q3C9iAwnr2OSL2EJMg00h5S1UwQ4IuFXexLTWzH5842JK89Dli7G1XT5vQnSNTUNs7cvsWW2bBK-276Ps--fTq9nZ5OLrl_PZ9GLihSJ8UjFaCABfCUVrXamaa-6ElSXnkjklhHNKV7xiWltOBQcHglmnNVRWFYwUR9n5xreK9tos-9DafmWiDWbdiP3c2B4TN2A0YbJy1rnKU14CsawU0ipltfeS8xq9Pm28lqPDwB66obfNnun-ly4szDzeGqG5LilDg_cbg8Uj2dn0wtz1SMHLQqviliL7bntYH29GnLlpQ_LQNLaDOCbDCoquoqQK0beP0Os49h2OFSl0VEQWxT01txg2dHXEO_o7UzOVlJRCa6GROv4DhU8FbfCxgzpgf09wshH4Hv97D_UuGCVmvZnmbjPNbjNR8ebhGHf871VEQG2An-BinXyAzsMOI4SUCCnOsCJ0Fob1ms7i2A0o_fD_UqQ_bmkMtfrXxc3p5eXlwxhkI06o6-bQ30_9b8l_ATh8H4E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334580733</pqid></control><display><type>article</type><title>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Han, Mingzhi ; Wang, Shuai ; Yang, Ning ; Wang, Xu ; Zhao, Wenbo ; Saed, Halala Sdik ; Daubon, Thomas ; Huang, Bin ; Chen, Anjing ; Li, Gang ; Miletic, Hrvoje ; Thorsen, Frits ; Bjerkvig, Rolf ; Li, Xingang ; Wang, Jian</creator><creatorcontrib>Han, Mingzhi ; Wang, Shuai ; Yang, Ning ; Wang, Xu ; Zhao, Wenbo ; Saed, Halala Sdik ; Daubon, Thomas ; Huang, Bin ; Chen, Anjing ; Li, Gang ; Miletic, Hrvoje ; Thorsen, Frits ; Bjerkvig, Rolf ; Li, Xingang ; Wang, Jian</creatorcontrib><description>Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and
in vivo
tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth
in vivo
. Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.
Synopsis
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.
Loss of CYP46A1 promotes malignant behavior of GBM.
CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol.
Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration.
Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis.
Graphical Abstract
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.</description><identifier>ISSN: 1757-4676</identifier><identifier>EISSN: 1757-4684</identifier><identifier>DOI: 10.15252/emmm.201910924</identifier><identifier>PMID: 31777202</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>24OHC ; Antiretroviral drugs ; Bile ; Blood-brain barrier ; Brain - metabolism ; Brain cancer ; Cancer ; Cell growth ; Cell proliferation ; Cholesterol ; Cholesterol - metabolism ; Cholesterol 24-Hydroxylase - genetics ; Cholesterol 24-Hydroxylase - metabolism ; cholesterol homeostasis ; CYP46A1 ; Cytochrome P-450 ; Datasets ; Development and progression ; Ectopic expression ; Efavirenz ; EMBO03 ; EMBO08 ; EMBO27 ; Gene expression ; Genes ; Genomes ; Glioblastoma ; Glioblastoma - metabolism ; Glioblastoma multiforme ; Health aspects ; Homeostasis ; Humans ; Hydroxylase ; Life Sciences ; Life Sciences & Biomedicine ; Lipid metabolism ; Lipoproteins ; Medical prognosis ; Medicine, Research & Experimental ; Metabolism ; Physiological aspects ; Prognosis ; Proteins ; Research & Experimental Medicine ; Ribonucleic acid ; RNA ; Science & Technology ; Sterol regulatory element-binding protein ; Therapeutic applications ; Transcription factors ; Tumors</subject><ispartof>EMBO molecular medicine, 2020-01, Vol.12 (1), p.e10924-n/a, Article 10924</ispartof><rights>The Author(s) 2019</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2019 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>COPYRIGHT 2019 John Wiley & Sons, Inc.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>50</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000502384200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</citedby><cites>FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</cites><orcidid>0000-0002-9482-5227 ; 0000-0002-0454-5281 ; 0000-0002-9622-7263 ; 0000-0002-0878-0211 ; 0000-0002-7762-3703 ; 0000-0001-8357-5974 ; 0000-0002-0319-7617 ; 0000-0002-5824-4134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949512/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6949512/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,2115,11567,27929,27930,28253,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31777202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03453983$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Mingzhi</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Saed, Halala Sdik</creatorcontrib><creatorcontrib>Daubon, Thomas</creatorcontrib><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Chen, Anjing</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Li, Xingang</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><title>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</title><title>EMBO molecular medicine</title><addtitle>EMBO Mol Med</addtitle><addtitle>EMBO MOL MED</addtitle><addtitle>EMBO Mol Med</addtitle><description>Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and
in vivo
tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth
in vivo
. Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.
Synopsis
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.
Loss of CYP46A1 promotes malignant behavior of GBM.
CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol.
Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration.
Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis.
Graphical Abstract
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.</description><subject>24OHC</subject><subject>Antiretroviral drugs</subject><subject>Bile</subject><subject>Blood-brain barrier</subject><subject>Brain - metabolism</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterol 24-Hydroxylase - genetics</subject><subject>Cholesterol 24-Hydroxylase - metabolism</subject><subject>cholesterol homeostasis</subject><subject>CYP46A1</subject><subject>Cytochrome P-450</subject><subject>Datasets</subject><subject>Development and progression</subject><subject>Ectopic expression</subject><subject>Efavirenz</subject><subject>EMBO03</subject><subject>EMBO08</subject><subject>EMBO27</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glioblastoma</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma multiforme</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hydroxylase</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Lipid metabolism</subject><subject>Lipoproteins</subject><subject>Medical prognosis</subject><subject>Medicine, Research & Experimental</subject><subject>Metabolism</subject><subject>Physiological aspects</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Research & Experimental Medicine</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Science & Technology</subject><subject>Sterol regulatory element-binding protein</subject><subject>Therapeutic applications</subject><subject>Transcription factors</subject><subject>Tumors</subject><issn>1757-4676</issn><issn>1757-4684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1v1DAQxSMEoqVw5oYicQGhbW3H8QcHpNWq0Eqt4FAOnCzbmey6SuJtnBTtf890d9l2KxAoh4wmv_fsN5kse03JMS1ZyU6gbdtjRqimRDP-JDukspQTLhR_uqulOMhepHRNiCgFVc-zg4JKKRlhh1l7tYDeLmEcgs9Du2yCt0OIXcpjndtmgB6q3C9iAwnr2OSL2EJMg00h5S1UwQ4IuFXexLTWzH5842JK89Dli7G1XT5vQnSNTUNs7cvsWW2bBK-276Ps--fTq9nZ5OLrl_PZ9GLihSJ8UjFaCABfCUVrXamaa-6ElSXnkjklhHNKV7xiWltOBQcHglmnNVRWFYwUR9n5xreK9tos-9DafmWiDWbdiP3c2B4TN2A0YbJy1rnKU14CsawU0ipltfeS8xq9Pm28lqPDwB66obfNnun-ly4szDzeGqG5LilDg_cbg8Uj2dn0wtz1SMHLQqviliL7bntYH29GnLlpQ_LQNLaDOCbDCoquoqQK0beP0Os49h2OFSl0VEQWxT01txg2dHXEO_o7UzOVlJRCa6GROv4DhU8FbfCxgzpgf09wshH4Hv97D_UuGCVmvZnmbjPNbjNR8ebhGHf871VEQG2An-BinXyAzsMOI4SUCCnOsCJ0Fob1ms7i2A0o_fD_UqQ_bmkMtfrXxc3p5eXlwxhkI06o6-bQ30_9b8l_ATh8H4E</recordid><startdate>20200109</startdate><enddate>20200109</enddate><creator>Han, Mingzhi</creator><creator>Wang, Shuai</creator><creator>Yang, Ning</creator><creator>Wang, Xu</creator><creator>Zhao, Wenbo</creator><creator>Saed, Halala Sdik</creator><creator>Daubon, Thomas</creator><creator>Huang, Bin</creator><creator>Chen, Anjing</creator><creator>Li, Gang</creator><creator>Miletic, Hrvoje</creator><creator>Thorsen, Frits</creator><creator>Bjerkvig, Rolf</creator><creator>Li, Xingang</creator><creator>Wang, Jian</creator><general>Nature Publishing Group UK</general><general>Wiley</general><general>John Wiley & Sons, Inc</general><general>EMBO Press</general><general>Wiley Open Access</general><general>John Wiley and Sons Inc</general><general>Springer Nature</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9482-5227</orcidid><orcidid>https://orcid.org/0000-0002-0454-5281</orcidid><orcidid>https://orcid.org/0000-0002-9622-7263</orcidid><orcidid>https://orcid.org/0000-0002-0878-0211</orcidid><orcidid>https://orcid.org/0000-0002-7762-3703</orcidid><orcidid>https://orcid.org/0000-0001-8357-5974</orcidid><orcidid>https://orcid.org/0000-0002-0319-7617</orcidid><orcidid>https://orcid.org/0000-0002-5824-4134</orcidid></search><sort><creationdate>20200109</creationdate><title>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</title><author>Han, Mingzhi ; Wang, Shuai ; Yang, Ning ; Wang, Xu ; Zhao, Wenbo ; Saed, Halala Sdik ; Daubon, Thomas ; Huang, Bin ; Chen, Anjing ; Li, Gang ; Miletic, Hrvoje ; Thorsen, Frits ; Bjerkvig, Rolf ; Li, Xingang ; Wang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6804-d2136eecd681f9d8f494b6a754472b866bb89d4d299a4164ebe62ab99eda83203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>24OHC</topic><topic>Antiretroviral drugs</topic><topic>Bile</topic><topic>Blood-brain barrier</topic><topic>Brain - metabolism</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterol 24-Hydroxylase - genetics</topic><topic>Cholesterol 24-Hydroxylase - metabolism</topic><topic>cholesterol homeostasis</topic><topic>CYP46A1</topic><topic>Cytochrome P-450</topic><topic>Datasets</topic><topic>Development and progression</topic><topic>Ectopic expression</topic><topic>Efavirenz</topic><topic>EMBO03</topic><topic>EMBO08</topic><topic>EMBO27</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glioblastoma</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma multiforme</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hydroxylase</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Lipid metabolism</topic><topic>Lipoproteins</topic><topic>Medical prognosis</topic><topic>Medicine, Research & Experimental</topic><topic>Metabolism</topic><topic>Physiological aspects</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Research & Experimental Medicine</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Science & Technology</topic><topic>Sterol regulatory element-binding protein</topic><topic>Therapeutic applications</topic><topic>Transcription factors</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Mingzhi</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Yang, Ning</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Saed, Halala Sdik</creatorcontrib><creatorcontrib>Daubon, Thomas</creatorcontrib><creatorcontrib>Huang, Bin</creatorcontrib><creatorcontrib>Chen, Anjing</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Miletic, Hrvoje</creatorcontrib><creatorcontrib>Thorsen, Frits</creatorcontrib><creatorcontrib>Bjerkvig, Rolf</creatorcontrib><creatorcontrib>Li, Xingang</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EMBO molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Mingzhi</au><au>Wang, Shuai</au><au>Yang, Ning</au><au>Wang, Xu</au><au>Zhao, Wenbo</au><au>Saed, Halala Sdik</au><au>Daubon, Thomas</au><au>Huang, Bin</au><au>Chen, Anjing</au><au>Li, Gang</au><au>Miletic, Hrvoje</au><au>Thorsen, Frits</au><au>Bjerkvig, Rolf</au><au>Li, Xingang</au><au>Wang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma</atitle><jtitle>EMBO molecular medicine</jtitle><stitle>EMBO Mol Med</stitle><stitle>EMBO MOL MED</stitle><addtitle>EMBO Mol Med</addtitle><date>2020-01-09</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>e10924</spage><epage>n/a</epage><pages>e10924-n/a</pages><artnum>10924</artnum><issn>1757-4676</issn><eissn>1757-4684</eissn><abstract>Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24‐hydroxylase (CYP46A1), a brain‐specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)‐hydroxycholesterol (24OHC), as one of the most dramatically dysregulated cholesterol metabolism genes in GBM. CYP46A1 was significantly decreased in GBM samples compared with normal brain tissue. A reduction in CYP46A1 expression was associated with increasing tumour grade and poor prognosis in human gliomas. Ectopic expression of CYP46A1 suppressed cell proliferation and
in vivo
tumour growth by increasing 24OHC levels. RNA‐seq revealed that treatment of GBM cells with 24OHC suppressed tumour growth through regulation of LXR and SREBP signalling. Efavirenz, an activator of CYP46A1 that is known to penetrate the blood–brain barrier, inhibited GBM growth
in vivo
. Our findings demonstrate that CYP46A1 is a critical regulator of cellular cholesterol in GBM and that the CYP46A1/24OHC axis is a potential therapeutic target.
Synopsis
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.
Loss of CYP46A1 promotes malignant behavior of GBM.
CYP46A1 inhibits GBM cells growth via catalyzing the production of 24(S)‐hydroxycholesterol.
Efavirenz, an anti‐HIV drug, has a a favorable BBB penetration.
Drug repurposing of Efavirenz inhibits the growth of GBM via activation of the CYP46A1‐24OHC axis.
Graphical Abstract
Loss of CYP46A1 partially caused excessive cholesterol accumulation in glioblastoma cells contributing to the maintenance of tumour cell viability and a malignant state. Efavirenz, an anti‐HIV drug, crosses the BBB and shows anti‐tumor effect though activation of the CYP46A1/24OHC axis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31777202</pmid><doi>10.15252/emmm.201910924</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9482-5227</orcidid><orcidid>https://orcid.org/0000-0002-0454-5281</orcidid><orcidid>https://orcid.org/0000-0002-9622-7263</orcidid><orcidid>https://orcid.org/0000-0002-0878-0211</orcidid><orcidid>https://orcid.org/0000-0002-7762-3703</orcidid><orcidid>https://orcid.org/0000-0001-8357-5974</orcidid><orcidid>https://orcid.org/0000-0002-0319-7617</orcidid><orcidid>https://orcid.org/0000-0002-5824-4134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-4676 |
ispartof | EMBO molecular medicine, 2020-01, Vol.12 (1), p.e10924-n/a, Article 10924 |
issn | 1757-4676 1757-4684 |
language | eng |
recordid | cdi_gale_infotracmisc_A710569969 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | 24OHC Antiretroviral drugs Bile Blood-brain barrier Brain - metabolism Brain cancer Cancer Cell growth Cell proliferation Cholesterol Cholesterol - metabolism Cholesterol 24-Hydroxylase - genetics Cholesterol 24-Hydroxylase - metabolism cholesterol homeostasis CYP46A1 Cytochrome P-450 Datasets Development and progression Ectopic expression Efavirenz EMBO03 EMBO08 EMBO27 Gene expression Genes Genomes Glioblastoma Glioblastoma - metabolism Glioblastoma multiforme Health aspects Homeostasis Humans Hydroxylase Life Sciences Life Sciences & Biomedicine Lipid metabolism Lipoproteins Medical prognosis Medicine, Research & Experimental Metabolism Physiological aspects Prognosis Proteins Research & Experimental Medicine Ribonucleic acid RNA Science & Technology Sterol regulatory element-binding protein Therapeutic applications Transcription factors Tumors |
title | Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20implications%20of%20altered%20cholesterol%20homeostasis%20mediated%20by%20loss%20of%20CYP46A1%20in%20human%20glioblastoma&rft.jtitle=EMBO%20molecular%20medicine&rft.au=Han,%20Mingzhi&rft.date=2020-01-09&rft.volume=12&rft.issue=1&rft.spage=e10924&rft.epage=n/a&rft.pages=e10924-n/a&rft.artnum=10924&rft.issn=1757-4676&rft.eissn=1757-4684&rft_id=info:doi/10.15252/emmm.201910924&rft_dat=%3Cgale_webof%3EA710569969%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334580733&rft_id=info:pmid/31777202&rft_galeid=A710569969&rft_doaj_id=oai_doaj_org_article_9027dbabbdc145e0a2567a88a9cc744f&rfr_iscdi=true |